yungman
- 5,741
- 294
\hbox {Is }\;\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} A_{i,j}B_{i,j}=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}A_{i,j} \sum_{i=1}^{\infty}\sum_{j=1}^{\infty}B_{i,j}\;\hbox{?}
\hbox {Is }\;\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} \;\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}A_{i,j}B_{i,j}=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} A_{i,j}B_{i,j}\;\hbox{?}
I think it is because even though the right side has two summation of ##i## , but both increment at the same time. So is ##j##. therefore the result is the same.
\hbox {Is }\;\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} \;\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}A_{i,j}B_{i,j}=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} A_{i,j}B_{i,j}\;\hbox{?}
I think it is because even though the right side has two summation of ##i## , but both increment at the same time. So is ##j##. therefore the result is the same.
Last edited: