Understanding Velocity in Standing Waves | Wave Motion Homework"

AI Thread Summary
The discussion centers on understanding the velocity of standing waves formed by the superposition of two wave functions. While standing waves have no net velocity in the x-direction, the participants explore the physical meaning of velocity in this context, questioning whether it is simply zero or related to the wave number k. Additionally, the second part of the homework involves finding expressions for f(x) and g(t) in the context of stationary waves on a string, with suggestions to use separation of variables and Fourier analysis. Participants express confusion over the necessity of infinite sums in the solution and the correct application of the wave equation. The conversation emphasizes the importance of matching terms and factoring in order to derive the necessary expressions.
joe:)
Messages
28
Reaction score
0

Homework Statement



1)I'm analysing a standing wave formed by superposition of Asin(kx-wt) and Asin(kx+wt) so it becomes 2Asinkxcoswt

It asks me to comment on the velocity of this wave. But I thought it was a standing wave - so it has no velocty in the x direction..

So what is its velocity - what does it mean physically - is it just 0? Or w/k? thanks

2) I'm given that general solution of wave equation of string length L can be written as the sum from r=0 to r=infinity of Arsin(xrpi/L)sin(r pi c t /L) + Brsin(xrpi/L)cos(r pi c t /L)

Then I'm told that stationary waves y=f(x)g(t) exist on a string length L.

I'm told f(x) = Asin(kx) I'm told to find an expression for k and find an expression for g(t)

Homework Equations





The Attempt at a Solution



I'm not really sure how to solve 2) to be honest..

I thought the f(x) would have to be an infinite sum and k = r pi / L where r is any integer..

I'm a bit confused..any help? Thanks
 
Physics news on Phys.org
Problem 2 delves into a little Fourier analysis, so if you're familiar with that at all try thinking in that direction.

As for the expression, you can use separation of variable to arrive at forms for the solution.

The wave will be described by the infinite sum of f(x)g(t) so the f(x) is actually only a component.

Edit:
I've absent mindedly forgot to mention that you should look at the wave equation as well, should help you a bit.
 
Last edited:
Thanks..

We haven't done Fourier yet..

I'm not sure how to find the expression by separation of variables..could you explain please? How will f(x) just be a constant A times sinkx? surely its an infitite sum? Confused :S

Also any ideas on Q1?
 
Q1 I'm not really sure.

Fourier is actually pretty easy but I bet this one can be done without.

Separation of variables is a method of solving partial differential equations. The idea is that you have PDE that describes what you're looking at (in this case you're interested in the wave equation). You assume a solution f(x,t) = g(x)h(t) and plug that into your PDE. Then you separate terms so that you only have one variable of each type on one side, so all the x's on one side and all the t's on the other. You can then set each side of the PDE to a separation constant (this is your k) and solve the ordinary differential equation.Though to be honest, the above is probably far more than you're actually being asked. I think that if you look at the equation for number 2 a bit longer you'll see that you can actually just match terms and pull out a g(t). Just look at what you can factor out and remember that sums are valid solutions.
 
sorry..i really can't see it at the moment...? I swear the expression for f(x) should be an infinite sum too?

thanks for your patience
 
It's not. You have the right k.

Try factoring f(x) out the given equation. Remember the solution is f(x) times g(x).
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top