Uniform Continuity proof, does it look reasonable?

spenghali
Messages
11
Reaction score
0

Homework Statement


Note: I will use 'e' to denote epsilon and 'd' to denote delta.

Using only the e-d definition of continuity, prove that the function f(x) = x/(x+1) is uniformly continuous on [0, infinity).

Homework Equations





The Attempt at a Solution



Proof:

Must show that for each e>0 there is d>0 s.t.

|x/(x+1) - a/(a+1)| < e whenever x,a are elements of [0, infinity) |x-a| < d.

|x/(x+1) - a/(a+1)| = |(-x+a)/[(x+1)(a+1)]| \leq |-x+a| = |x-a|.

Thus, given e>0, if we choose d=e then,

|x/(x+1) - a/(a+1)| < e whenever |x-a| < d.

This implies that f(x) = x/(x+1) is uniformly continuous on [0,infinity). QED
 
Physics news on Phys.org
Sure. That works. You could clean up few details, like x/(x+1) - a/(a+1)=(x-a)/((x+1)(a+1)), not (-a+x)/((x+1)(a+1)) and you could also explicitly justify why |(x-a)/((x+1)(a+1))|<=|x-a| but the proof works fine.
 
Cool, thanks for the input.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top