Upper and lower bound Riemann sums

Click For Summary

Homework Help Overview

The discussion revolves around calculating the upper, lower, and midpoint Riemann sums for the integral of the function \(12 - x^2\) over the interval from -3 to 3, using the partition \(\{-3, -1, 3\}\).

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore the definitions and calculations for upper, lower, and midpoint sums, with some questioning the original poster's understanding of how to apply these concepts correctly.

Discussion Status

Some participants have provided clarifications regarding the evaluation of function values at specific points for the upper and lower sums. There is acknowledgment of potential errors in the original calculations, particularly in evaluating the function at the specified points.

Contextual Notes

There is a reference to a resource for a thorough explanation of Riemann integrals and sums, indicating that participants may be seeking additional context or clarification on the topic.

Niaboc67
Messages
249
Reaction score
3

Homework Statement


Find the upper, lower and midpoint sums for $$\displaystyle\int_{-3}^{3} (12-x^{2})dx$$
$$\rho = \Big\{-3,-1,3\Big\}$$

The Attempt at a Solution



For the upper:
(12-(-1)^2)(-1-(-3)) + (12-(-1))(3-(-1))
=74

For the lower:
(12-(-3)^2)(-1-(-3))+(12-3)(3-(-1))
=42

For midpoint sum:
I used the expression $$\frac{b+a}{n}$$

(12-(-2)^2)(2) + (12-(2)^2)(4)
=48

Are these values correct? Does the process seem good?

Please explain
Thank you
 
Physics news on Phys.org
I think you have misunderstood slightly. "Upper", "lower" and "midpoint" do not refer to the argument ("x") values, but to the function values.

In your case you need to calculate f(-3), f(-1) and f(3) and use those values to determine "upper" and "lower".
 
  • Like
Likes   Reactions: Niaboc67
@Svein I thought finding upper, lower and midpoints was essentially taking the partition {-3,-1,3} then breaking that into sub-intervals (-3,-1),(-1,3) then referencing the graph to see which is biggest or smallest in that interval. And in (-3,-1) if we are looking for upper that would be -1 then we would evaluate -1 by plugging it back into the original function and multiplying that by the distance between those two points and so on.
 
Niaboc67 said:

Homework Statement


Find the upper, lower and midpoint sums for $$\displaystyle\int_{-3}^{3} (12-x^{2})dx$$
$$\rho = \Big\{-3,-1,3\Big\}$$

The Attempt at a Solution



For the upper:
(12-(-1)^2)(-1-(-3)) + (12-(-1)^2)(3-(-1)) ##\ \ \ ## You didn't square the indicated -1 .
=74

For the lower:
(12-(-3)^2)(-1-(-3))+(12-(3^2))(3-(-1)) ##\ \ \ ## You didn't square the indicated 3 .
=42

For midpoint sum:
I used the expression $$\frac{b+a}{n}$$
(12-(-2)^2)(2) + (12-(2)^2)(4)
=48

Are these values correct? Does the process seem good?

Please explain
Thank you
You made errors in evaluating your function for the Upper and Lower sums.

How are upper and lower sums defined in your textbook/course?

The midpoint sum looks to be correct.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
12
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K