Use Fourier Analysis to solve

corey2014
Messages
22
Reaction score
0

Homework Statement


let f[k]=1/k!, then let fsub2[k]=f[k] convoluted with f[k]
what is a simple formula for fsubm[k]?


Homework Equations


f[k] convoluted with f[k] = summation from negative infinity to infinity of 1/m! * 1/(n-m)!


The Attempt at a Solution


I tried a base case, but now I feel like this should be e^x, because the rest of the terms will drop out? Please Help I don't really know where to start...
 
Physics news on Phys.org
corey2014 said:

Homework Statement


let f[k]=1/k!, then let fsub2[k]=f[k] convoluted with f[k]
what is a simple formula for fsubm[k]?

Homework Equations


f[k] convoluted with f[k] = summation from negative infinity to infinity of 1/m! * 1/(n-m)!

The Attempt at a Solution


I tried a base case, but now I feel like this should be e^x, because the rest of the terms will drop out? Please Help I don't really know where to start...

You don't have any x in your sequence. Do you know the relation between convolution of sequences and power series? This problem can be done using that, if you know it, or it can be worked directly. But I think you want to write the convolution more carefully. Your sequence f is only defined for k = 0,1,2... and the convolution of f with itself would be$$
f\star f = g \hbox{ where }g(n)=\sum_{k=0}^n f(k)f(n-k)$$If you write out ##g(n)## for your particular function, you might be surprised and recognize it from somewhere.
 
Last edited:
no I don't know it, or maybe I just don't recognize it... When i broke it down I got 1/n!+1/(n+1)!+...+1/(n+1)!+1/n!
 
LCKurtz said:
You don't have any x in your sequence. Do you know the relation between convolution of sequences and power series? This problem can be done using that, if you know it, or it can be worked directly. But I think you want to write the convolution more carefully. Your sequence f is only defined for k = 0,1,2... and the convolution of f with itself would be$$
f\star f = g \hbox{ where }g(n)=\sum_{k=0}^n f(k)f(n-k)$$If you write out ##g(n)## for your particular function, you might be surprised and recognize it from somewhere.

corey2014 said:
no I don't know it, or maybe I just don't recognize it... When i broke it down I got 1/n!+1/(n+1)!+...+1/(n+1)!+1/n!

Each term in the sum for ##g(n)## would have two factorials, one for ##f(k)## and one for ##f(n-k)## wouldn't it? Substitute your formulas for ##f## directly in the sum for ##g(n)## and leave the summation sign in. What do you get? See if you can find any connection to binomial expansions.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top