Use Gauss' Law to find the electric field

latentcorpse
Messages
1,411
Reaction score
0
Use Gauss' Law to find the electric field, everywhere,of charge of uniform density \rho occupying the region a<r<b, where r is the distance from the origin. Having done this, find the potential.

Ok, so far I said that by Gauss' Law,

\Phi=\oint_S \vec{E} \cdot \vec{dS} = \int_V \nabla \cdot \vec{E} dV = \frac{Q}{\epsilon_0} = \frac{1}{\epsilon_0} \int_V \rho dV

and since V is arbitrary I obtain Poisson's Equation
\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}

I just can't see how to rearrange for E?

Initially I was considering integrating something over a sphere of radius b and then over a sphere of radius a and subtracting them but I don't have any idea what to integrate.

Are either of these ideas useful? If so, what do I do next? If not, can you suggest something?

Cheers
 
Physics news on Phys.org


What is a and b? If you are calculating the E field inside the uniformly charged sphere then the charge enclosed by the Gaussian surface is a function of the radius. Outside the sphere it can be treated as a point charge. The potential then can be found between the points a and b.
 


Don't ignore the most important point of the problem. There is a symmetry that tells you the direction of E (+ or -) at every point in space, and that the magnitude of E is independent of two certain generalized coordinates.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top