Usefulness of Kretschmann scalar

  • Thread starter Thread starter HolyCats
  • Start date Start date
  • Tags Tags
    Scalar
HolyCats
Messages
3
Reaction score
0
Hello,

As I'm sure you are aware the Kretschmann scalar (formed by contracting the contravariant and covariant Riemann tensors) has some use in the identification of gravitational singularities. Specifically, because K is essentially the sum of all permutations of R's components, but is itself coordinate invariant, its divergence at a point is sufficient to prove the existence of a true gravitational singularity at that point.

I am wondering whether this is a necessary condition as well. It seems to me that it is not, since one could imagine a situation in which two terms in the sum diverge in opposite directions. Perhaps I have missed something, though?
 
Physics news on Phys.org
In fact, singularities are extremely hard to define generally. The divergence of curvature scalars is not always sufficient, nor necessary conditions for us to want to classify a specific space-time as "singular".

An example of the "insufficient" case, it could be that the divergence of the curvature only blows up "at infinity", so that no observer could ever get to this singularity. On the other hand, there are some spacetimes which have vanishing curvature everywhere but is still singular.

Whether the curvature becomes unbounded or not is only one of the "indicators" we use to figure out if a singularity exists or not.
 
  • Like
Likes mosesjohn
I've only used it in sense of a rough measure of 'amount of curvature' (no possible scalar is adequate, otherwise we wouldn't need a tensor), that is more useful than R in GR because it is typically non-zero in vacuum regions of GR solutions, while R is identically zero in vacuum regions. I've never run across any theorems using it to draw significant non-obvious conclusions (example of obvious: non-vanishing K implies manifold not flat). (Don't take my not having seen any as a very strong statement).
 
Okay, I can see that K diverging at infinity would not be so unexpected. So what you're saying is that if K blows up at some ordinary point in your coordinate system (which I guess might map to infinity in some other coordinate system), that point isn't necessarily a gravitational singularity, but it is a point you might want to investigate in more detail, correct?

Would the following be sufficient to demonstrate the existence of a singularity:
1) K diverges at a point p in a coordinate system Q
2) It is possible to map Q onto some new coordinate system S, with p going to a set of points P.
3) S is maximally extended.
4) In S, P is timelike separated from some class of observers.

PAllen: You mean either Rab (the Ricci tensor) or R (the Ricci scalar), I'm assuming (my fault for not subscripting before). Rabcd (the Riemann tensor) need not be zero in vacuum, I don't think?
 
HolyCats said:
PAllen: You mean either Rab (the Ricci tensor) or R (the Ricci scalar), I'm assuming (my fault for not subscripting before). Rabcd (the Riemann tensor) need not be zero in vacuum, I don't think?

Since we were discussing scalars, I assumed Ricci scalar was obvious by context.
 
Yeah, my bad. Anyways thanks.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top