pdxautodidact
- 26
- 0
Homework Statement
Use the Bohr quantization rules to calculate the energy levels for a particle moving in a potential
\begin{equation}
V\left(r\right)= V_0 \left(\frac{r}{a}\right)^k
\end{equation}
where k is positive and very large. Sketch the form of the potential (done) and show that the energy values approach $E_n = kn^2$, where k is a constant.
Homework Equations
\begin{equation}
L=mvr=n\hbar
\end{equation}
The Attempt at a Solution
So, first I derived an equation for the force
\begin{equation}
-\vec{\nabla} V = -\frac{kV_0}{a}\left(\frac{r}{a}\right)^{k-1} \hat{r} = \vec{F}\left(r\right)
\end{equation}
Setting the force equal to the centripetal force give me:
\begin{align}
-\frac{kV_0}{a}\left(\frac{r}{a}\right)^{k-1} &= m\frac{v^2}{r} \\
&= \frac{n^2\hbar^2}{mr^3}
\end{align}
Where the centripetal force is rewritten in terms of $n\hbar$ via the quantization rule. Now with a inverse square force, one can easily solve for r, but in this case, after algebraic manipulation, I have
\begin{align}
r^{k+2}&= - \frac{n^2\hbar^2 a^{k+2}}{kV_0} \\
r_n &= \sqrt[k+2]{- \frac{a^k n^2\hbar^2}{kV_0}}
\end{align}
Now, here I have a problem I have no constraints to prevent a complex radius, because $n, \hbar,$ and $k$ are all positive, and $V_0$ or $a$ are not specified in any way.
I have kept the exponents exact, but since k is positive and very large, I'd think $k \simeq k+2 \simeq k-1$, but I haven't used this. Is this reasonable? i would think $x^{1000} \simeq x^{1001}$, etc. . .
So the next step would be to use the quantized orbits to derive the energy,
\begin{align}
E &= \frac {p^2}{2m} + V \\
&=-\frac{kV_0}{2}\left(\frac{r}{a}\right)^k + V_0 \left(\frac{r}{a}\right)^k \\
&= \left(1-\frac{k}{2}\right)V_0\left(\frac{r}{a}\right)^k
\end{align}
Now, if I allow the assumption that $k \simeq k+2$, I could substitute $r_n$ for $r$, and get:
\begin{align}
E &= \left(1-\frac{k}{2}\right)V_0\frac{-n^2\hbar^2 a^k}{kV_0 a^k} \\
&= \left(1-\frac{k}{2}\right)\frac{1}{k}\hbar^2 n^2 \\
\end{align}
We're given that k is very large and positive, which reduces the former equation to
\begin{equation}\frac{1}{2}\hbar^2 n^2
\end{equation}
So this meets the target of $E_n = kn^2$, where $k= \frac{\hbar^2}{2}$. Does this look like a reasonable quantization? Should the energy be positive? Any constructive criticism, etc. would be greatly appreciated. Cheers!