I Using determinant to find constraints on equation

TheDemx27
Gold Member
Messages
169
Reaction score
13
Screen Shot 2017-01-15 at 7.17.09 PM.png

Basically I don't know how to get to the constraints from the system of equations. In class we used det to find constraints for homogenous equations, but we didn't go over this situation. Someone spell it out for me?
 
Physics news on Phys.org
The determinant is sin^2(\theta )(1+cos^2(\theta )).
 
mathman said:
The determinant is sin^2(\theta )(1+cos^2(\theta )).
How did you get that?
##det(A)=cos^2(\theta )sin^2(\theta )+sin^4(\theta )## Which then simplifies into what they got: ## =\frac{1}{2}\ (1-cos(\theta ))=sin^2(\theta )##

My question is how they proceed after that anyways.
 
The solution for a particular unknown in a system of linear equations can be expressed as a ratio of two determinants. In your example, the determinant of the denominator is ##\sin^2(q)##. The numerator is the determinant of a matrix formed by using ##C_1, C_2## in place of some entries in the coefficient matrix, depending on which unknown you are solving for. See if the standard method of solving equations in that manner ( e.g. https://www.cliffsnotes.com/study-g...tions-using-determinants-with-three-variables ) derives the equations the article ends up with.##\begin{pmatrix} \cos(\theta) \sin(\theta) & \sin^2(\theta) \\ -\sin^2(\theta) & \cos(\theta)\sin(\theta) \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} =\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} ##

Solve for ##X,Y##.
 
  • Like
Likes TheDemx27
TheDemx27 said:
How did you get that?
##det(A)=cos^2(\theta )sin^2(\theta )+sin^4(\theta )## Which then simplifies into what they got: ## =\frac{1}{2}\ (1-cos(\theta ))=sin^2(\theta )##

My question is how they proceed after that anyways.
my mistake
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top