Using function T_A(v) = Av to transform 2 vectors

leej72
Messages
11
Reaction score
0

Homework Statement



Let u1 = [1 1]^T and u2 = [0 -1]^T. Find a 2 x 2 real matrix A so that the function T_A is a map from ℝ^2 to ℝ^2, given by multiplication by A,

T_A := Av,

sends T_A(u1) = v1 and T_A(u2) = v2 where v1 = [cosθ sinθ]^T and v2 = [-sinθ cosθ]^T. Explain/justify your work.

Homework Equations




The Attempt at a Solution



in the first part of the question, we are asked to prove that v1 and v2 form an orthonormal basis for ℝ^2. At first I thought that we would use Gram-Schmidt process but the two vectors are already orthonormal. So basically I am clueless as to where to start/proceed.
 

Attachments

Physics news on Phys.org
I attached the pdf file of the question, it is question #1b.
 
we must have A.u_1=v_1=(cos(theta),sin(theta))^T, and A.u_2=v_2=(-sin(theta),cos(theta))
In other words, a_11 + a_12 = cos(theta) ; a_21 + a_22 = sin(theta) ; - a_12 = -sin(theta) ; - a_22 = cos(theta) .
 
well, first you prove that v_1 and v_2 are orthonormal:
normal: sqrt(cos²(theta) + sin²(theta))=1 in both cases.
ortho: if [.,.] is the inproduct in R, then [v_1,v_2]= (-sin(th)cos(th)+sin(th)cos(th))=0.
then you prove that they are a basis of R^2. which means 1. linearly independent 2. span{(v_1),(v_2)}=R^2.
 
damabo said:
we must have A.u_1=v_1=(cos(theta),sin(theta))^T, and A.u_2=v_2=(-sin(theta),cos(theta))
In other words, a_11 + a_12 = cos(theta) ; a_21 + a_22 = sin(theta) ; - a_12 = -sin(theta) ; - a_22 = cos(theta) .

Thanks a lot for helping me out, I guess I was overcomplicating the question because we are covering different topics, mainly Gram-Schmidt process so I thought we would have to incorporate that into the question.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top