Using Perturbation Theory to Calculate Probability in Quantum Mechanics

andyfreesty1e
Messages
12
Reaction score
0
Quantum Physics Help!

Homework Statement


The spring constant for a particle in the ground state of a simple harmonic oscillator changes by a factor a^4 instantaneously, what is the probability that the particle is observed in the ground state of the new potential immediately following the change

can anyone give me a step in the right direction please, i think i have to use perturbation theory, but haven't really been taught how to

Homework Equations


v(x)=(a^4)(kx^2)/2 is the new potential



The Attempt at a Solution

 
Physics news on Phys.org


There's no need for perturbation theory here. Just ask yourself two questions:

(1)What is the ground state of the harmonic oscillator both before and after the change in spring constant?

(2)If I'm told that a particle is in the state |\psi_1\rangle and I want to find the probability that it is measured in the state |\psi_2\rangle, what equation would I use?

The answer to number (1) is derived in most introductory QM texts, and the answer to number (2) is often taken to be one of the postulates of QM.
 


so the ground state before is (1/a(sqrt Pi))^1/2 exp[-x^2/2a^2] where a=(h_bar/mw)^1/2
and w=(k/m)^1/2 so the ground state after is the same but w=(a^4k/m)^1/2 ?

so then calculate c=integral (psi*Psi(x,0))dx
and then c^2 is the probability?

does this seem about right?
 


Seems about right to me:smile:
 


sorry to keep asking questions, i think I am being a bit stupid, just to clarify something, in my above post would Psi(x,0) be my initial wavefunction, the one where the potential has not changed, and psi* would be the wavefunction when the potential has changed?
thanks
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top