Using the Sandwich Theorem to Solve Limits Involving Trigonometric Functions

  • Thread starter Thread starter ravenea
  • Start date Start date
  • Tags Tags
    Limit Theorem
ravenea
Messages
10
Reaction score
0

Homework Statement



\lim_{x \to 0} \sqrt{x^3 + x^2}\sin\frac{\pi}{x}

Homework Equations



The Attempt at a Solution



We know that -1 \leq \sin\frac{\pi}{x} \leq 1
\Leftrightarrow -\sqrt{x^3 + x^2} \leq \sqrt{x^3 + x^2}\sin\frac{\pi}{x} \leq \sqrt{x^3 + x^2} since \sqrt{y} \geq 0\forall y\in\mathbb{P}\cup\{0\}
Now, \lim_{x \to 0} -\sqrt{x^3 + x^2} = 0 = \lim_{x \to 0} \sqrt{x^3 + x^2}
\therefore \lim_{x \to 0} \sqrt{x^3 + x^2}\sin\frac{\pi}{x} = 0 by Sandwich Theorem.
 
Last edited:
Physics news on Phys.org
What's your question?
 
I want to know if it is correct.

What worries me is if I can state that -1 \leq \sin{\frac{\pi}{x}} \leq 1 since x is approaching 0, and right there \frac{\pi}{x} is undefined. Thanks in advance.
 
What you can say is -1 ≤ sin(θ) ≤ 1 for all real θ.

Therefore, -1 \leq \sin{\frac{\pi}{x}} \leq 1 provided that x ≠ 0 .

Since x approaches zero for your limit, x is not equal to zero, so you're fine.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top