ravenea
- 10
- 0
Homework Statement
\lim_{x \to 0} \sqrt{x^3 + x^2}\sin\frac{\pi}{x}
Homework Equations
The Attempt at a Solution
We know that -1 \leq \sin\frac{\pi}{x} \leq 1
\Leftrightarrow -\sqrt{x^3 + x^2} \leq \sqrt{x^3 + x^2}\sin\frac{\pi}{x} \leq \sqrt{x^3 + x^2} since \sqrt{y} \geq 0\forall y\in\mathbb{P}\cup\{0\}
Now, \lim_{x \to 0} -\sqrt{x^3 + x^2} = 0 = \lim_{x \to 0} \sqrt{x^3 + x^2}
\therefore \lim_{x \to 0} \sqrt{x^3 + x^2}\sin\frac{\pi}{x} = 0 by Sandwich Theorem.
Last edited: