Vapor pressure and atmospheric pressure

AI Thread Summary
Vapor pressure is defined as the pressure exerted by a vapor in equilibrium with its liquid at a given temperature and is independent of atmospheric pressure. However, for a liquid to boil, its vapor pressure must equal the atmospheric pressure. At sea level, higher atmospheric pressure means more air molecules are present, requiring a higher vapor pressure for boiling. Conversely, at higher altitudes like Mount Everest, the lower atmospheric pressure allows the liquid to boil at a lower temperature because fewer vapor molecules need to escape to match the reduced air pressure. This relationship illustrates that while vapor pressure itself is unaffected by atmospheric pressure, the boiling point of a liquid is influenced by it, as the boiling point is the temperature at which vapor pressure equals atmospheric pressure.
silversurf
Messages
25
Reaction score
0
the book says vapor pressure is independent of atmospheric pressure, if that is the case then why must the vapor pressure of a liquid be equal to the atmopheric pressure for it boils. I pictured atmospheric pressure as a column of air sitting above a liquid and therefore pushing down the gas molecules from the liquid ,thus affecting its vapor pressure
 
Chemistry news on Phys.org
When you consider a column of air sitting above a piston below which there is the water, then the vapour can only form if its pressure is equal or higher than the pressure of the air. If it is smaller, the vapour molecules will be pressed back into the liquid. This does not mean that the vacuum pressure changes appreciably with external pressure. It is rather a statement about mechanical equilibrium.
 
  • Like
Likes 1 person
Vapor pressure, not 'vacuum pressure', whatever that is.
 
DrDu said:
When you consider a column of air sitting above a piston below which there is the water, then the vapour can only form if its pressure is equal or higher than the pressure of the air. If it is smaller, the vapour molecules will be pressed back into the liquid. This does not mean that the vacuum pressure changes appreciably with external pressure. It is rather a statement about mechanical equilibrium.

The last sentence is where I'm getting confused. There was a problem in my book that said that you have a pot of boiling water at sea level and boil it. Then you take that same pot of water to mount everest and boil it, and the boiling point it lower at higher altitude. Due to higher altitude the atmospheric pressure is lower. I saw this as the atmospheric pressure exerting less force on vapor pressure so you would need less energy/temperature to get the water to boiling point, where atmospheric pressure = vapor pressure. So my reasoning is, less atmospheric pressure = less vapor pressure = lower boiling point. But there's a problem in my book that says that vapor pressure only depends on temperature and particles dissolved in solution. I understand that temperature and vant hoff factor affect vapor pressure but why doesn't atmospheric pressure affect it too?
 
vapor pressure of a liquid is the pressure at which vapors of the liquid are saturated. if you increase that pressure by just one tad bit by introducing additional vapors into the fixed volume, the molecules will be so close together that you will have a liquid instead of a gas.

so , :) a liquid will boil when the pressure exerted by its vapors (vapor pressure) equals the atmospheric pressure. this simply means that when you have an equal amount of molecules of that liquid escape and exist in the gas phase as there are molecules of air, we observe boiling.

so, at sea level, you have more molecules of air in a fixed volume (higher pressure) then you do high up on a tall mountain. this means that high up on the mountain the liquid we are trying to boil will need to have a fewer number of its molecules escape in the gas phase than it did at sea level in order to equal the number of molecules of air in a fixed volume. hence you will observe boiling at a lower temperature.

so as you can see the atmospheric pressure does not affect the vapor pressure (see definition at top of my post) but it affects the temperature of the boiling point
 
  • Like
Likes 1 person
Got it, thanks so much!
 
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
Back
Top