CalcYouLater
- 51
- 0
Homework Statement
Hello. I want to see if I am interpreting the following correctly, I certainly don't expect anyone to work the problem out as it is (at least with my approach) fairly tedious.
Compute the following:
(\vec{V}\cdot\nabla)\vec{U}
(\vec{U}\cdot\nabla)\vec{V}
Given:
\vec{r} = x\hat{x}+y\hat{y}+z\hat{z}
\vec{V}=yz\hat{x}+xz\hat{y}+xy\hat{z}
\vec{U}=\frac{x^2+y^2+z^2}{(x^2+y^2)^{\frac{3}{2}}}\hat{z}-\frac{z}{(x^2+y^2)^{\frac{3}{2}}}\vec{r}
The Attempt at a Solution
Here is my approach
(\vec{U}\cdot\nabla)\vec{V}= U_{x}\frac{d}{dx}(yz\hat{x}+xz\hat{y}+xy\hat{z})+U_{y}\frac{d}{dy}(yz\hat{x}+xz\hat{y}+xy\hat{z})+U_{z}\frac{d}{dz}(yz\hat{x}+xz\hat{y}+xy\hat{z})
I evaluate the first part of the expression above as:
U_{x}\frac{d}{dx}(yz\hat{x}+xz\hat{y}+xy\hat{z})=\frac{-z^{2}x}{(x^2+y^2)^{\frac{3}{2}}}\hat{y}+\frac{-zxy}{(x^2+y^2)^{\frac{3}{2}}}\hat{z}
After doing the same for the rest of the equation, and adding the components, my result is a vector.
I use the same approach for:
(\vec{V}\cdot\nabla)\vec{U}
Does anyone disagree? If not, does anyone see a more efficient way of doing this?