Vector field flow over surface in 3D

skrat
Messages
740
Reaction score
8

Homework Statement


Calculate the flow of ##\vec{F}=(y^2,x^2,x^2y^2)## over surface ##S## defined as ##x^2+y^2+z^2=R^2## for ##z \geq 0## with normal pointed away from the origin.

Homework Equations


The Attempt at a Solution



The easiest was is probably with Gaussian law. I would be really happy if somebody could correct me if I am wrong and answer my question below:

Gaussian law: ##\int \int _O\vec{F}d\vec{S}+\int \int _S\vec{F}d\vec{S}=\int \int \int_{Body} \nabla\vec{F}dV## where I used notation ##O## for the circle.

Now ##\nabla\vec{F}= 0## therefore ##\int \int _O\vec{F}d\vec{S}+\int \int _S\vec{F}d\vec{S}=0## so all that remains is to calculate the floe through surface ##O##.

Using polar coordinates ##x=r \cos \varphi ## and ##y= r \sin \varphi## for ##z=0##. Than ##r_{\varphi } \times r_{r}=(0,0,-r)##

##\int \int _O\vec{F}d\vec{S}=-\int_{0}^{2\pi }\int_{0}^{R}r^{5} \cos^2 \varphi \sin^2 \varphi d\varphi dr##

That should be ##-\frac{\pi R^6}{96}##.

Question here: I am a bit confused weather I should use the other sign here ##r_{\varphi } \times r_{r}=(0,0,-r)## or is this the right one?
 
Physics news on Phys.org
Gauß's Law is for all the surface normal vectors pointing away from the enclosed volume. So your idea is correct.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top