1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Vectors a,b |a+kb|=1 .Show that |a||b|sinx<=b, x:angle of vectors a,b

  1. Oct 19, 2011 #1
    1. The problem statement, all variables and given/known data

    Let there be two vectors [tex]\mathbf{OA},\mathbf{OB}\neq\mathbf{0}[/tex]If [tex]
    \exists k\in \mathbb{R}[/tex] such as that [tex]\left \| \mathbf{OA} +k\mathbf{OB}\right \|=1[/tex] show that [tex]Area(OACB)\leq\left \| \mathbf{OB} \right \|[/tex] (OACB:parallelogram)

    2. Relevant equations

    3. The attempt at a solution

    I proved that we need to show that [tex]\left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \|[/tex] where θ:angle of vectors a=ΟΑ,b=ΟΒ but after that I am stuck.
    Any suggestions? Any hints on how I should proceed?
    Last edited: Oct 19, 2011
  2. jcsd
  3. Oct 19, 2011 #2
    Nevermind, I solved it. Here is the solution

    First of all,
    [tex]\left \| \mathbf{a} +k\mathbf{b}\right \|=1\Leftrightarrow (\mathbf{a} +k\mathbf{b})^{2}=1\Leftrightarrow \mathbf{a}^{2} +k^{2}\mathbf{b}^{2}+2k\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle =1\Leftrightarrow\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}=\frac{(1-\mathbf{a}^{2} -k^{2}\mathbf{b}^{2} )^{2}}{4k^2} (1) [/tex]

    We need to show that
    [tex]\left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \|\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2} \sin(\theta )^{2}\leq \left \|\mathbf{b} \right \|^{2}\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}- \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}\cos(\theta )^{2}\leq\left \|\mathbf{b} \right \|^{2}\
    \Leftrightarrow\left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}-\left \|\mathbf{b} \right \|^{2}\leq\left\langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}(2)[/tex]


    (2)\overset{(1)}{\rightarrow}\mathbf{a}^{2} \mathbf{b}^{2}-\mathbf{b} ^{2}\leq\frac{(1-\mathbf{a}^{2}-k^{2}\mathbf{b}^{2}) ^{2}}{4k^2}\Leftrightarrow (1-\mathbf{a}^{2}+k^{2}\mathbf{b}^{2})^{2}\geq 0

    which is true!
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook