1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Vectors a,b |a+kb|=1 .Show that |a||b|sinx<=b, x:angle of vectors a,b

  1. Oct 19, 2011 #1
    1. The problem statement, all variables and given/known data

    Let there be two vectors [tex]\mathbf{OA},\mathbf{OB}\neq\mathbf{0}[/tex]If [tex]
    \exists k\in \mathbb{R}[/tex] such as that [tex]\left \| \mathbf{OA} +k\mathbf{OB}\right \|=1[/tex] show that [tex]Area(OACB)\leq\left \| \mathbf{OB} \right \|[/tex] (OACB:parallelogram)

    2. Relevant equations
    None


    3. The attempt at a solution

    I proved that we need to show that [tex]\left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \|[/tex] where θ:angle of vectors a=ΟΑ,b=ΟΒ but after that I am stuck.
    Any suggestions? Any hints on how I should proceed?
     
    Last edited: Oct 19, 2011
  2. jcsd
  3. Oct 19, 2011 #2
    Nevermind, I solved it. Here is the solution

    First of all,
    [tex]\left \| \mathbf{a} +k\mathbf{b}\right \|=1\Leftrightarrow (\mathbf{a} +k\mathbf{b})^{2}=1\Leftrightarrow \mathbf{a}^{2} +k^{2}\mathbf{b}^{2}+2k\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle =1\Leftrightarrow\left \langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}=\frac{(1-\mathbf{a}^{2} -k^{2}\mathbf{b}^{2} )^{2}}{4k^2} (1) [/tex]

    We need to show that
    [tex]\left \|\mathbf{a}\right \| \left \|\mathbf{b}\right \| \sin(\theta )\leq \left \|\mathbf{b} \right \|\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2} \sin(\theta )^{2}\leq \left \|\mathbf{b} \right \|^{2}\Leftrightarrow \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}- \left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}\cos(\theta )^{2}\leq\left \|\mathbf{b} \right \|^{2}\
    \Leftrightarrow\left \|\mathbf{a}\right \|^{2} \left \|\mathbf{b}\right \|^{2}-\left \|\mathbf{b} \right \|^{2}\leq\left\langle {\mathbf{a} ,\mathbf{b} } \right\rangle^{2}(2)[/tex]

    Finally,
    [tex]

    (2)\overset{(1)}{\rightarrow}\mathbf{a}^{2} \mathbf{b}^{2}-\mathbf{b} ^{2}\leq\frac{(1-\mathbf{a}^{2}-k^{2}\mathbf{b}^{2}) ^{2}}{4k^2}\Leftrightarrow (1-\mathbf{a}^{2}+k^{2}\mathbf{b}^{2})^{2}\geq 0
    [/tex]

    which is true!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Vectors a,b |a+kb|=1 .Show that |a||b|sinx<=b, x:angle of vectors a,b
  1. If a =! b (Replies: 11)

  2. Angle: vector (a + b) (Replies: 8)

Loading...