Verifying Vector Equations: Proving Properties of Cross Products

  • Thread starter Thread starter chocbizkt
  • Start date Start date
  • Tags Tags
    Vector
chocbizkt
Messages
5
Reaction score
0
2 questions i have;
if true

1. proove that; p x ( q + r ) = p x q + p x r

2. and p x ( q x r ) = ( p x q ) x r

where;

p = p1i + p2j + p3k
q = q1i + q2j + q3k
r = r1i + r2j + r3k

i have left handside p x (q + r) = (p1i + p2j + p3k)( (q1+ r1)i + (q2+ r2)j + (q3+ r3)k)

am i on the right track?
 
Physics news on Phys.org
You're on the right track. But you've barely started. Now do the cross product.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top