Volume Calculation Using Cylindrical Shells

  • Thread starter Thread starter quickclick330
  • Start date Start date
  • Tags Tags
    Cylindrical Volumes
quickclick330
Messages
82
Reaction score
0
Consider the given curves to do the following.
x = 3 + (y-2)**2, x = 4
Use the method of cylindrical shells to find the volume V of the solid obtained by rotating the region bounded by the given curves about the x-axis.


V = ??

****************

I set up the problem like this...

V = integral from 0 to 3((4-(y^2-4y+7))(y + 1) dy)


(height) (radius) ...of "shell"

Did I set this up right? Hopefully this is clear enough, if you can't understand I can clarify. Thanks for the help in advance!
 
Physics news on Phys.org
What does "(y-2)**2" mean? Did you mean (y-2)^2?
 
yes, sorry, it copy-pasted like that
 
never mind, i solved it finally
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top