Find the volume inside the sphere [tex]x^{2}+y^{2}+z^{z}=16[/tex] and outside the cylinder [tex]x^{2}+y^{2}=4[/tex]. Use polar coordinates.(adsbygoogle = window.adsbygoogle || []).push({});

The sphere's center lies at the origin. The region of integration is the base of the cylinder, the radius 2 xy disk [tex]x^{2}+y^{2}=4[/tex] and the two parts of the sphere are given by [tex]z=\pm\sqrt{16-x^{2}-y^{2}}[/tex]

Volume of sphere is 4 pi r^3 over 3 = 4 pi 4^3 over 3

Therefore:

Volume inside sphere but outside cylinder = [tex]\frac{4\pi 4^{3}}{3}-2\int_{0}^{2\pi}\int_{0}^{2}\left(\sqrt{16-r^{2}}\right)rdrd\theta[/tex]

What is wrong with my reasoning?

Thank you very much

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Volume inside sphere, outside cylinder

**Physics Forums | Science Articles, Homework Help, Discussion**