Volume of Region Bounded by y = e^(-x^2) and y = 0 About the y-Axis

  • Thread starter Thread starter whatlifeforme
  • Start date Start date
  • Tags Tags
    Integral Volume
whatlifeforme
Messages
218
Reaction score
0

Homework Statement


find the volume of the region bounded by the graph of the given equations about the y-axis.


Homework Equations


y=e^(-x^2)
y=0
x=0
x=1



The Attempt at a Solution


2pi (integral) (0 to 1) x(e^(-x^2)) dx

not sure how to do this integral.
 
Physics news on Phys.org
Start by substituting u = -x^2.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top