Wald General Relativity: On the homogenous cosmology, Page 178

qinglong.1397
Messages
108
Reaction score
1
Hi, everybody. I have some problem with Wald's statement shown in the picture. This is from the last paragraph in Page 178.

He claimed that there are only solutions with two of the p_{\alpha} positive and one negative. But it's easy to find out that if two of the p_{\alpha} are negative while the third positive, there is no contradiction.

Can you guys help me with this? Why should all the solutions have two positive p_{\alpha} and one negative? Thank you:smile:

(The picture is from http://books.google.com/books?id=9S...ce=gbs_ge_summary_r&cad=0#v=onepage&q&f=false)
 

Attachments

  • wald problem.PNG
    wald problem.PNG
    40.6 KB · Views: 503
Physics news on Phys.org
Well using (7.2.58) and (7.2.60) we have ##p_2^2 + p_1^2 - p_1 - p_2 + p_1p_2 = 0##. Now if ##p_3 < 0## then ##p_2 > 1 - p_1##. Plot these two and you will find that both ##p_1,p_2 > 0##. If ##p_3 >0## then ##1 - p_1> p_2##; plotting these two again you will find that ##p_1 > 0,p_2 < 0## or vice-versa. Finally if ##p_3 = 0## then either ##p_1 = 1## and ##p_2 = 0## or vice-versa which are just the trivial solutions.
 
WannabeNewton said:
Well using (7.2.58) and (7.2.60) we have ##p_2^2 + p_1^2 - p_1 - p_2 + p_1p_2 = 0##. Now if ##p_3 < 0## then ##p_2 > 1 - p_1##. Plot these two and you will find that both ##p_1,p_2 > 0##. If ##p_3 >0## then ##1 - p_1> p_2##; plotting these two again you will find that ##p_1 > 0,p_2 < 0## or vice-versa. Finally if ##p_3 = 0## then either ##p_1 = 1## and ##p_2 = 0## or vice-versa which are just the trivial solutions.

Thanks! Never thought of this. Great!
 
No problem! Make sure you do the problems at the end of that chapter; some of them are really fun (problems 7.1,7.4, and 7.5 in particular).
 
WannabeNewton said:
No problem! Make sure you do the problems at the end of that chapter; some of them are really fun (problems 7.1,7.4, and 7.5 in particular).

Sure. I'll try to solve all of them before the end of the next week.
 
Awesome, have fun with that!
 
WannabeNewton said:
Awesome, have fun with that!

Hi WannabeNewton, I know it's been late, but I haven't been able to figure out how to solve the problem 7.4. Can you help me out? Thank you!
 
Back
Top