Wave Functions, Uncertainty Principle, Probability Density Function.

Epideme
Messages
4
Reaction score
0

Homework Statement


Consider the wave packet defined by
psi(x) = integral(limits of +infinity and - infinity) dke^(-alpha(k-k_0)^2) e^(ikx)

a)What is the mean value of the momentum p barred (it's just a line over the p) of the particle in the quantum state given by this wave function
b)What is approximately the uncertainty delta p of the momentum of the particle in this state
c)use the integral tables to evaluate the integral psi(x) and find the probability distribution |psi(x)|^2
d)what is the mean value of x in this state?
e)what is the uncertainty delta x in this state?
f)Is the Heisenberg relation consistent with the values obtained for delta x and delta p


Homework Equations


delta x delta p = hbar/2 <---heisenberg uncertainty principle
|psi(x)|^2 = 1


The Attempt at a Solution


Completely lost, could probably do part f, but need the preceeding parts to attempt it. I'm really very lost with quantum physics, layman's terms wouldn't be entirely wasted on me
 
Physics news on Phys.org
The mean value of an operator is given by \langle \hat{A} \rangle=\langle \psi| \hat{A} | \psi \rangle=\int_{-\infty}^\infty \psi^* \hat{A} \psi dx in the position representation. This ought to be somewhere in your text.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top