Wave particle duality confusion

In summary: Yes, the measurement of momentum and position must be done simultaneously to measure the uncertainty in momentum.
  • #1
815
70
I can't quite seem to understand wave particle duality. Every particle has a characteristic wavelength according to de Broglie. Is this the wavelength for the solution to the schrodinger equation for that particle? Take light for example, the wavelength of light corresponds the the wavelength of the electromagnetic wave, which is a physical wave. However, this is not the same wave as the solution to the schrodinger equation (is it?) since the schrodinger equation gives complex (and hence non-physical) solutions. However, I know that de Broglie came up with his equations by simply reversing Einstein's equation for the photoelectric effect. So what kind of waves are particles? Is a photon both a quantum mechanical matter wave and an electromagnetic wave at the same time? Do particles in general exist as physical waves or only as imaginary waves relating to the probability of finding the particle at that point, or both of these at the same time?
 
Physics news on Phys.org
  • #2
Every particle has a characteristic wavelength according to de Broglie. Is this the wavelength for the solution to the schrodinger equation for that particle?
Yes. De Broglie waves without SE are often quite confusing semiclassical stuff. SE makes it all more precise.

However, this is not the same wave as the solution to the schrodinger equation (is it?) since the schrodinger equation gives complex (and hence non-physical) solutions.
They are not the same. Solutions of Maxwell's equations are different thing than solutions of Shrodinger's equation. You cannot use SE for light, since it it works only for nonrelativistic particles. In fact I'm not even sure what works for light in quantum theory, but at least it is not the SE. It could be that the propagator approach is the one that is used, not differential equations. Somebody may correct me in this.

So what kind of waves are particles?
Quantum mechanical superposition is behind it all. In classical theory particle is in some location [tex]x[/tex]. In quantum theory there is a complex number associated with each possible location of the particle, that is [tex]\Psi(x)[/tex]. This becomes the wave function. The wave function is very different from physical fields such as EM field.

Is a photon both a quantum mechanical matter wave and an electromagnetic wave at the same time?
Haha. I've been trying to ask about the same thing. This is more difficult than it looks. You can pass courses on quantum mechanics without getting answer to what photons are. :smile:
 
  • #4
Thanks that was really helpful. I have another question, about the Heisenburg uncertainty principle this time(momentum-postion). Is the particle in a definite place with a definite momentum, which we cannot be sure of because we have to "bounce" photons off it to find out, or is it fundamentally not in any particular place with a particular momentum. My course notes seem to say both of these and contradict themselves. On the one hand, the uncertainty principle was derived in my notes as the minimum disturbance needed to observe a particle by bouncing a photon off it. On the other hand, the bohr radius was estimated using only the uncertainty principle and the fact that the atom will arrange itself so as to be in a state of minimal energy, which suggests the uncertainty principle is more fundamental than the first example (it uses the fact that the electron being near the centre of the atom causes a large uncertainty in momentum, and hence energy).
 
  • #6
So if the particle is not fundamentally random, why does the Heisenburg uncertainty principle give such a good estimate for the Bohr radius? If the particle is fundamentally random, why can the Heisenburg uncertainty principle be derived as the minimum disturbance needed to make a measurement using collisions with photons?
 
  • #7
Because the mathematical origin of the Heisenberg "uncertainty" relations can be viewed as a property of waves, which are purely deterministic objects in QM described by the Schrodinger equation.
 
  • #8
Similarly as [tex]\psi(x)[/tex] tells what complex amplitude is associated with each point in space, there is [tex]\phi(p)[/tex] that tells what complex amplitude is associated with each point in more abstract momentum space. That is a space, where points mean some specific mometum of the particle. Uncertainty relation merely says, that both [tex]\psi(x)[/tex] and [tex]\phi(p)[/tex] cannot be too sharp at the same time. I've never understood why some much is talked about "disturbing the particle while measuring". It is not a good point to start with, pedagogically.
 
  • #9
In my course notes, a sketch derivation of the Heisenburg uncertainty principle is given using a collision problem, with momentum being transferred from one particle to another resulting in uncertainty in momentum with a given uncertainty in position. Doesn't this mean that its only impossible to measure momentum and position accurately at the same time, and not that they are fundamentally not "sharp" as you put it? I don't understand how your answers have explained how this and the estimation of the Bohr radius can be used at the same time, when the second assumes the uncertainty to exist even without colliding a particle to "see" the electron.
 
  • #10
Even if there is no measurments carried out, [tex]\psi(x)[/tex] and [tex]\phi(p)[/tex] cannot be sharp at the same time. I can believe that this doesn't sound convincing if these "measurement disturbs particle" explanations are all you have heard, but I'm quite convinced that this is absolutely correct. In this case uncertainty relation comes also from the fact that [tex]\psi[/tex] and [tex]\phi[/tex] are Fourier transforms of each others.

You don't need to believe this of course, probably I wouldn't if I was you. :smile: Just try to study quantum mechanics more, and keep these thoughts in your mind at the same time. Hopefully this starts to make more sense then.
 
  • #11
It's not that I don't believe it, I just don't understand why its possible to arrive at the Heisenburg uncertainty principle by a collision between the photon and the observed particle if this is not the cause of the uncertainty. It can't be a coincidence. Or is it a special case?
 
  • #12
I think this is another issue of the http://physicsandphysicists.blogspot.com/2006/11/misconception-of-heisenberg-uncertainty.html" [Broken]. You are trying to apply this to a single measurement, which isn't where the HUP directly manifest itself. Note that if you look at the expression for the uncertainty in position and momentum, you'll see that they clearly involved "average" values and the "average of a square" values. These things are not well-defined when you are trying to determine just ONE value of the position and THEN, ONE value of the momentum. In each of these, the uncertainties that are associated with the single value of the position and the single value of the momentum are the instrumentation uncertainty (or accuracy), and NOT the HUP.

It is why it isn't making sense or difficult to comprehend. The HUP has nothing to do with instrumentation accuracy, i.e. how you measure it. You could use a photon, or in the case of a single slit, use how much the additional momentum that appear in the perpendicular direction to the slit. You do not get the HUP in just one single measurement of the observable.

Zz.
 
Last edited by a moderator:
  • #13
Ok thanks I think I understand it a bit better now. Back to the original question, why is it that the de Broglie wavelength of a photon (by reversing Einstein's photoelectric equation) is the wavelength of an electromagnetic wave, wheras in general the de Broglie wavelength of a particle is the wavelength of the Schrodinger wave?
 

What is the concept of wave-particle duality?

The concept of wave-particle duality refers to the understanding that particles, such as electrons and photons, can exhibit both wave-like and particle-like behavior. This means that they can act as both discrete particles and also as waves with properties such as wavelength and frequency.

How did the idea of wave-particle duality come about?

The concept of wave-particle duality was first proposed by scientists such as Louis de Broglie and Niels Bohr in the early 20th century. They observed that certain experiments, such as the double-slit experiment, showed behavior that could not be explained by either classical wave or particle theories alone.

What evidence supports the concept of wave-particle duality?

There is a significant amount of experimental evidence that supports the concept of wave-particle duality. For example, the double-slit experiment, the photoelectric effect, and the diffraction of particles all demonstrate the dual nature of particles. Additionally, mathematical equations such as the Schrödinger equation also support this concept.

Why is wave-particle duality important in modern physics?

Wave-particle duality is important in modern physics because it helps to explain the behavior of particles at the subatomic level. It also provides a framework for understanding and predicting the behavior of particles in quantum mechanics, which is essential in fields such as particle physics and nanotechnology.

What are some common misconceptions about wave-particle duality?

One common misconception is that particles can exist as both a wave and a particle at the same time, which is not the case. Another is that the wave-particle duality applies to all objects, when in fact it is only applicable to very small particles. Additionally, some may mistakenly believe that it is a theory or hypothesis, when it is actually a well-established principle in modern physics.

Suggested for: Wave particle duality confusion

Replies
0
Views
107
Replies
2
Views
1K
Replies
38
Views
2K
Replies
24
Views
870
Replies
17
Views
1K
Replies
9
Views
1K
Back
Top