What is the Uncertainty in Wavelength for an Excited Atomic State?

chill_factor
Messages
898
Reaction score
5

Homework Statement



An excited atomic state has a lifetime of 1 ms.

What is the uncertainty in its energy?

The photon emitted during its decay is 550 nm in wavelength. What is the uncertainty and fractional uncertainty in its wavelength?

Homework Equations



ΔEΔt≥hbar/2

The Attempt at a Solution



a. Straightforward plugging into the equation.

ΔE = hbar/(2Δt) = 5.25x10^-32

b. Use ΔE=hΔf to find the frequency.

Δf = 79.6 s^-1

if I were to plug this into ΔλΔf=c, it results in a very large Δλ which is unphysical.

Δλ = ?
 
Physics news on Phys.org
that is the right method. the result is not a wavelength, but an uncertainty in the wavelength, and it should be a fraction of 500nm
 
The resulting uncertainty is in the hundreds of meters though =(
 
While it's true that ##\lambda f = c##, it doesn't follow that ##\Delta \lambda \Delta f=c##.
 
work out the energy associated with the transition, then work out the ratio of the uncertainty of the energy and the energy of the transition. the energy is related to the wavelength of a particle through the dispersion relation. assume a non relativistic electron's dispersion relation, and work out the wavelength uncertainty from there.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top