Waves in Semiclosed Tubes: Calculating Frequencies and Lengths

  • Thread starter Thread starter CioCio
  • Start date Start date
  • Tags Tags
    Waves
AI Thread Summary
A semiclosed tube oscillates at observed frequencies of 1000, 1400, and 1800 Hz, indicating sequential harmonics. The fundamental frequency is determined to be 200 Hz, with the frequencies corresponding to the fifth, seventh, and ninth harmonics. The relationship between frequency and tube length is expressed as ƒn = 86n/L. Using this formula, the length of the tube is calculated to be 0.43 meters. This discussion highlights the process of identifying harmonics and calculating tube length based on observed frequencies.
CioCio
Messages
2
Reaction score
0
I'm doing a self-guidance type of study, trying to learn my way through a book based on physics and the sound of music. I haven't dabbled with waves since high school.

A semiclosed tube is sounded at room temperature. It is observed that the tube can be made to oscillate rather easily at several frequencies that include 1000, 1400, and 1800 Hz consecutively. What is the length of the tube?

I know that these are sequential harmonics. Therefore, given that it's a semiclosed tube and L = length of tube in meters:

λ1 = 4L
λ3 = 4L/3
λ5 = 4L/5
λ7 = 4L/7​

I'm having trouble figuring out how to determine exactly which harmonics these are. Converting the frequencies into their respective periods gives me:


Tn = \frac{1}{1000 Hz} = 0.001000 s
Tn+2 = \frac{1}{1400 Hz} = 0.0007143 s
Tn+4 = \frac{1}{1800 Hz} = 0.0005555 s​

(where n is the nth harmonic)​

Looking at the basis for harmonics (in semiclosed tubes), I know that if a wave travels a distance of 4L, or an odd-numbered integral quotient of 4L, in a time equal to its own period, a standing wave is formed. In other words, the 1000 Hz wave listed above must travel 4L/n meters in 0.001000 second for a standing wave to form.

But how can I determine what n is? One cannot simply assume that 1000 Hz is the fundamental frequency. Likewise, as shown by the basic wave formula of v = ƒλ, one cannot calculate wavelength from frequency/period alone.

I thought about an approach based around velocity but, again, I only know the time component of one oscillation.

Assuming room temperature (23 °C; 296 K), I know that:

ƒn = \frac{86n}{L}

The calculation would be simple, but I don't know how I can calculate n. I apologize for not having more work to show, and I've tried to make up for that by posting my logic, but I'm at a standstill.
 
Physics news on Phys.org
Converting into wavelengths and time periods is not the easiest way to do this.

If the fundamental frequency of a closed tube is f, what are the frequencies of the harmonics?

Try to match up that information with the observed frequencies of 1000, 1400, 1800. (Hint: think about the difference between successive frequencies).
 
Thanks, Aleph. You're right; I was making it too complicated. :approve:

AlephZero said:
If the fundamental frequency of a closed tube is f, what are the frequencies of the harmonics?

For closed tubes, ƒn = nƒ1

So, in response to your question: ƒ2 = 2f, ƒ3 = 3f, ƒ4 = 4f, and so on.

Try to match up that information with the observed frequencies of 1000, 1400, 1800. (Hint: think about the difference between successive frequencies).

With the 400 Hz difference between successive frequencies, and knowing that even harmonics are skipped in semiclosed tubes, that must mean the fundamental frequency is 200 Hz. Which means that 1000 Hz is the fifth harmonic, 1400 Hz is the seventh, and 1800 Hz is the ninth.

Now, given my formula ƒn = 86n/L, I can calculate the length of the tube. - 0.43 m

Thanks!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top