Weight Driven Generator Calculations

AI Thread Summary
The discussion centers on designing a weight-driven generator system, drawing parallels with a grandfather clock mechanism. The user inquires about the motor's specifications, specifically its output voltage and current draw at 188 RPM, and seeks guidance on calculating the necessary weight to achieve a specific drop rate. Responses highlight the importance of considering motor and generator efficiency, estimating that the required mass to generate sufficient energy is approximately 5110 kg due to energy conversion losses. The calculations reveal that powering a lamp for even a short duration would necessitate an impractically large weight or height, indicating significant challenges in the design. Overall, the feasibility of the proposed system is questioned based on these calculations.
OhioRay
Messages
2
Reaction score
0
Hello! I am in the beginning stages of designing a system that would drive a generator using gravity - similar to an old grandfather clock. I have a couple of questions about my assumptions/design that I am stuck on:

- I found a motor which is rated 6v-12v DC, 188 RPM @ 12V with no load, and a max no-load current of 0.53mA. Does this mean that if I were to drive the motor at 188 RPM, I would see 12V of output, with a max current draw of 0.53 mA?

- For my gear system right now I am calculating that in order to drive @ 188 RPM I will need to have a four gear system, with the 2nd and 3rd gears on the same shaft in order to step the gear ratio twice. Basically I am looking at this: Weight drives Gear 1 (100 Teeth), Gear 1 drives Gear 2 (16 teeth), Gear 2 is on the same shaft as Gear 3 (100 teeth) so they have the same rotational speed. Gear 3 drives Gear 4 (16 teeth) which is connected to the motor shaft to be driven at 188 RPM. In order to achieve the proper output and the drop rate that I want, I calculated the first gear needs to rotate at 0.5 RPM, which gives me a drop rate of 1.2 inches/min - or 6 feet over the course of an hour. What I am unsure of is how to calculate the weight that I need to get this rate! How would I go about calculating the friction/other forces in the system which will create an equilibrium with a certain weight at this drop rate?

Any help on either of these 2 items is much appreciated!

Thanks.
 
Engineering news on Phys.org
Welcome to PF.
You can expect an efficiency of about 50% in the motor and 50% in the generator. So the generator voltage will be the same as the motor but the current generated will be about one quarter of the motor current.

Consider that you are converting potential energy E = mass * gravity * height, into electrical energy, E = volts * amps * time.
Therefore; volts * amps * time = mass * gravity * height
Hence; required mass = (volts * amps * time) / (gravity * height)

Use the MKSA units. One hour is 3600 seconds and 6 feet is 1.8288 metres.
Therefore; mass = (12V * 0.53A * 3600 sec) / ( 9.8 ms-2 * 1.8288 m)
mass = 1277.5 kg, or about one and a quarter tonnes.
Then apply the 25% efficiency by increasing the mass by four times to 5110 kg or 11,265 pounds.
 
OhioRay said:
a motor which is rated 6v-12v DC, 188 RPM @ 12V with no load
I'm very confused by the rest of your post, and the reply, after this statement. Doesn't the no-load rpm figure of a motor assume that there is no gear train attached?
 
Baluncore said:
Welcome to PF.
You can expect an efficiency of about 50% in the motor and 50% in the generator. So the generator voltage will be the same as the motor but the current generated will be about one quarter of the motor current.

Consider that you are converting potential energy E = mass * gravity * height, into electrical energy, E = volts * amps * time.
Therefore; volts * amps * time = mass * gravity * height
Hence; required mass = (volts * amps * time) / (gravity * height)

Use the MKSA units. One hour is 3600 seconds and 6 feet is 1.8288 metres.
Therefore; mass = (12V * 0.53A * 3600 sec) / ( 9.8 ms-2 * 1.8288 m)
mass = 1277.5 kg, or about one and a quarter tonnes.
Then apply the 25% efficiency by increasing the mass by four times to 5110 kg or 11,265 pounds.

That is...substantial. So to power the lamp for ~1 minute would require a 187 lb weight... Or to power the lamp for an hour using a 25 kg weight I would need a 374 m tall ceiling. Sounds like this would work perfectly for the Empire State building! Yea... I don't think that'll work! Thanks for the help!
 
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top