zmalone
- 10
- 0
I understand \int^{1}_{-1}1-|x|dx = 1 visually just by graphing it and taking the area of the triangle but for the sake of more complicated examples I'm not exactly sure what step I'm messing up when I use the FTOC:
|x|= x when x>0, -x when x<0
\int^{0}_{-1}1-|x|dx + \int^{1}_{0}1-|x|dx
= \int^{0}_{-1}1-(-x)dx + \int^{1}_{0}1-(x)dx
= \frac{x^2}{2}|^{0}_{-1} - \frac{x^2}{2}|^{1}_{0}
= -1/2 - 1/2 = -1 \neq1
Any input is appreciated and hope this makes sense lol (still getting used to the formula drawer).
|x|= x when x>0, -x when x<0
\int^{0}_{-1}1-|x|dx + \int^{1}_{0}1-|x|dx
= \int^{0}_{-1}1-(-x)dx + \int^{1}_{0}1-(x)dx
= \frac{x^2}{2}|^{0}_{-1} - \frac{x^2}{2}|^{1}_{0}
= -1/2 - 1/2 = -1 \neq1
Any input is appreciated and hope this makes sense lol (still getting used to the formula drawer).