What am I doing wrong integrating with 1-|x|?

  • Thread starter Thread starter zmalone
  • Start date Start date
  • Tags Tags
    Integrating
zmalone
Messages
10
Reaction score
0
I understand \int^{1}_{-1}1-|x|dx = 1 visually just by graphing it and taking the area of the triangle but for the sake of more complicated examples I'm not exactly sure what step I'm messing up when I use the FTOC:

|x|= x when x>0, -x when x<0

\int^{0}_{-1}1-|x|dx + \int^{1}_{0}1-|x|dx


= \int^{0}_{-1}1-(-x)dx + \int^{1}_{0}1-(x)dx


= \frac{x^2}{2}|^{0}_{-1} - \frac{x^2}{2}|^{1}_{0}

= -1/2 - 1/2 = -1 \neq1

Any input is appreciated and hope this makes sense lol (still getting used to the formula drawer).
 
Physics news on Phys.org
hi zmalone! welcome to pf! :smile:
zmalone said:
= \int^{0}_{-1}1-(-x)dx + \int^{1}_{0}1-(x)dx


= \frac{x^2}{2}|^{0}_{-1} - \frac{x^2}{2}|^{1}_{0}

you missed out [x]-11, = 2 :wink:
 
Wow :( I don't know why I was taking the derivative of 1 instead its anti-derivative but I certainly confused myself by doing so for the past half hour. Thanks for pointing it out!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top