What are some Trigonometry integration homework equations?

songoku
Messages
2,470
Reaction score
386

Homework Statement


a. \int cos(\pi~sin~x)~dx

b. \int x~cos(\pi~sin~x)~dx

Homework Equations


integration


The Attempt at a Solution


can anyone help me getting started? Thanks
 
Physics news on Phys.org
That cannot be done in terms of "elementary functions".
 
HallsofIvy said:
That cannot be done in terms of "elementary functions".

ok thanks a lot
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top