What Are the Cosets in Q/Z(Q)?

  • Thread starter Thread starter missavvy
  • Start date Start date
  • Tags Tags
    Cosets Group
missavvy
Messages
73
Reaction score
0

Homework Statement


Find the cosets in Q/Z(Q)


Homework Equations





The Attempt at a Solution



So Z(Q) is the centre of Q..
Then Z(Q) is normal in Q.

I don't get what the cosets would be without any given elements of Q or Z(Q)..
But I'm assuming since it is the centre of Q there is some trick?

Thanks.
 
Physics news on Phys.org
What is Q here? The quaternion group? I will assume it is.

What is the center of Q? Does i commute with every element? does j? does k? does -1? etc.? Once you have determined the center you should be able to find representatives for every coset in Q/Z(Q).
 
Hmm, is the operation simply addition? If so, Q is commutative, and Z(Q)=Q.
 
I get:
{1,-1} = Z(Q)= Z(Q)(-1)
{i, -i} = Z(Q)i = Z(Q)(-i)
{j, -j} = Z(Q)j = Z(Q)(-j)
{k, -k} = Z(Q)k = Z(Q)(-k)

is this correct?
 
Yes, this is correct. Sorry for the first answer, I thought Q ment rationals...
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top