Your region is an open square: the corners are (0,0), (0,1), (1,0) and (1,1). However, these corners, and their joining edges, are not actually in the square; that is, the boundary of the square is not itself in the square. Therefore, the problem---exactly as written---has no solution; that is, there is no max and no min! There are suprema and infima, but because your feasible set is OPEN, the suprema and infima are not attained in this case. If you changed the set to {(x,y): 0 ≤ x,y ≤ 1} then you would have a well-posed problem. (This is very similar to asking what is the minimum value of x, subject to x > 0. Well, there is no minimum, because x = 0 has not been allowed.)
Considering the closed-rectangle case, the max and min problems are very different: the min problem is a so-called convex programming problem, and so any local constrained min is automatically a global min (global inside the rectangle, that is). However, the max problem is non-convex optimization problem, whose nature is "combinatoric" in general. In this specific case it is easy enough, but in more general problems of this type (say with a much more complicated constraint set) the problem would---in the worst case---be solvable (as far as we currently know) only by enumerating all the possibilities and just finding the best one numerically. (This gets into the are of so-called NP-hard problems; the max problem is a special case of NP-hard.)