Borogoves
- 23
- 0
let \zeta(z)=\sum_{n \in \mathbb{N}} n^{-z} ~ {{a+ib}}>1
then, \zeta(z)=0 iff z=-2n where n is a natural number.
pi(x)=\int_0^\infty\frac{dx}{\xS[x+1]} gamma(x+)
where S[x+1]= \sum_{n \in \mathbb{N}} n^-{x+1}
I have discovered that pi(x)=\int_a^b\frac{dx}/logx = 1/log b+ 2/log b + 3!/logb +...
furthermore, pi(x)-\int_^x\frac{dx}+1/2 \int_^x(1/2)\frac{dx} (logx)^-1 ~ (x^1/3) /logx
is this already kmown ?
then, \zeta(z)=0 iff z=-2n where n is a natural number.
pi(x)=\int_0^\infty\frac{dx}{\xS[x+1]} gamma(x+)
where S[x+1]= \sum_{n \in \mathbb{N}} n^-{x+1}
I have discovered that pi(x)=\int_a^b\frac{dx}/logx = 1/log b+ 2/log b + 3!/logb +...
furthermore, pi(x)-\int_^x\frac{dx}+1/2 \int_^x(1/2)\frac{dx} (logx)^-1 ~ (x^1/3) /logx
is this already kmown ?
Last edited by a moderator: