What are the minimum and maximum values of f(x) on the interval [1,3]?

  • Thread starter Thread starter naspek
  • Start date Start date
  • Tags Tags
    Derivative
naspek
Messages
176
Reaction score
0
Let f(x) = 5x^3 +4x + 8

(i) find f'(x)

answer--> 15x^2 + 4

(ii) Show that f(x) is increasing on (-\infty,\infty)

answer--> don't know how to prove it..

(iii)Hence find the minimum and maximum value of f(x) on the closed
interval [1,3]

answer-->please guide me to start aswering this question..
 
Physics news on Phys.org
A function is increasing if the derivative is greater than zero. If the function is increasing then what are its maximum and minimum values in a closed interval?
 
should i search for critical points first?
 
If you like. But you can see directly from the expression of the derivative that it's never equal to zero.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top