... So let me briefly explain one approach (in both standard and Bohmian QM) that seems most promissing to me. An interested reader can find more details in
http://xxx.lanl.gov/abs/0811.1905 [Int. J. Quantum Inf. 7 (2009) 595-602]
http://xxx.lanl.gov/abs/1002.3226 [Int. J. Quantum Inf. 9 (2011) 367-377]
The essence of this approach is to treat time on an equal footing with space. Space is treated as in the standard approach, while time is treated just as one additional (fourth) dimension. This approach is relativistic in spirit, but a non-relativistic limit of it is also different from the usual treatment of time in QM. In fact, it can be thought of as a generalization of usual QM, in the sense that wave functions now live in an extended Hilbert space - a space of functions of both x and t.
With this approach, the usual rules of thumb on decay probabilities in standard QM now can be derived from first principles, just as for any other quantum observable. But how the Bohmian deterministic approach determines time at which the decay will happen? As usual in Bohmian QM, it all depends on the initial particle positions. However, now the "initial position" has a somewhat different meaning. While in the usual Bohmian QM the initial position is the set
x(t=0), y(t=0), z(t=0),
which clearly does not treat time on an equal footing with space, in the approach I am talking about the initial condition is the set
x(s=0), y(s=0), z(s=0), t(s=0)
where s is a relativistic-scalar parameter that parameterizes the trajectory. This parameter can be thought of as a generalized proper time. In this approach time t is also one of the hidden variables that may not be known in advance, which in essence is why the time of an event (such as a decay) looks random. As discussed in more detail in the papers above, the final statistical predictions coincide with those of standard QM.