What Determines the Most Probable Value of r in Hydrogen's Ground State?

  • Thread starter Thread starter syang9
  • Start date Start date
  • Tags Tags
    Homework Hydrogen
syang9
Messages
61
Reaction score
0

Homework Statement


Griffiths 4.14: What is the most probably value of r, in the ground state of hydrogen? (Hint: First you must figure out the probability that the electron would be found between r and r+dr.

Here is the posted solution:

http://www.glue.umd.edu/~syang9/problem%204.14%20solution.PNG

I don't understand the approach; why does multiplying the probability density by \[<br /> 4\pi r^2 dr\] give the probability that the electron will be found between r and r+dr? Why do we differentiate p(r)? In general, I thought the way to find the probability of a particle being in a particular energy eigenstate was to take the inner product of the general wavefunction with the energy eigenstate..

<br /> \[<br /> \left| {c_n } \right|^2 = \int_{ - \infty }^\infty {\Psi ^* (\overrightarrow {\bf{r}},t) \cdot \psi (r){\rm{ }}dr} <br /> \]<br />

But the general wave function is a sum which involves c_n.. so I don't understand what governs which approach to take..
 
Last edited by a moderator:
Physics news on Phys.org
I hope this question doesn't fall into the abyss of unanswered questions, forever forgotten by all..
 
It takes longer to fall into the abyss of unanswered questions than two hours. Be patient. The solution is doing exactly what the hint proposes. It's finding the probability density of the wave function as a function of r by integrating over the angular coordinates. That's where the 4*pi*r^2 comes from, it's what you get from that integration together with the volume element in spherical coordinates. Then you maximize it, hence the derivative.
 
Last edited:
So I want to figure out at what point the probability density is a maximum; that's why I set the derivative to zero. OK, I get it, thanks!
 
Last edited:
(Also, yes, you are right. I will try to be more patient.)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top