What do we call the function in this diagram?

  • Thread starter Thread starter navigator
  • Start date Start date
  • Tags Tags
    Diagram Function
navigator
Messages
42
Reaction score
0
We call the function f' in this diagrams:

\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> {E}\ar[r]^{i} \ar[d]_{f} &amp; {X} \ar[dl]^{f&#039;}\\<br /> {Y} &amp;}}<br /> \end{xy}<br /> \end{displaymath}<br />
the entension of function f;
(i is an inclusion map)

\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> {E}\ar[r]^{i} \ar[dr]_{f&#039;} &amp; {X} \ar[d]^{f}\\<br /> &amp;{Y} }}<br /> \end{xy}<br /> \end{displaymath}<br />
the restriction of function f;
(i is an inclusion map)

\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> &amp;{E}\ar[d]^{p}\\<br /> {X}\ar[ur]^{f&#039;}\ar[r]_{f} &amp; {Y} } }<br /> \end{xy}<br /> \end{displaymath}<br />
the lifting of function f;

then how do we call the function f' in this this diagram:
\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> {X}\ar[r]^{f}\ar[rd]_{f&#039;} &amp; {Y} \ar[d]^{p}\\<br /> &amp;{E} } }<br /> \end{xy}<br /> \end{displaymath}<br />
 
Physics news on Phys.org
Oh,the latex codes do not display properly here.
So my question is what is the inverse of lifting? like restriction is the inverse of extension.
 

Similar threads

Back
Top