What Does A - I_3 Signify in Linear Algebra?

ssb
Messages
119
Reaction score
0

Homework Statement



Lets say A = a matrix.

What is meant by the question A - I_3 ?

I don't understand what the I means and I am only given one matrix... a 3x3 matrix listed as A
 
Last edited:
Physics news on Phys.org
I_3 is a 3x3 identity matrix - ones down the diagonal and zeros elsewhere.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top