What Does One Non-Trivial Irreducible Representation of Clifford Algebra Mean?

countable
Messages
12
Reaction score
0
I'm doing a course which assumes knowledge of Group Theory - unfortunately I don't have very much.

Can someone please explain this statement to me (particularly the bits in bold):

"there is only one non-trivial irreducible representation of the Cliford algebra, up to conjugacy"

FYI The Clifford algebra is just the the relationship between gamma matrices:

[\gamma_\mu,\gamma_\nu]=2\eta_{\nu\mu}

where [..] is the anticommutator rather than the commutator
 
Physics news on Phys.org
The γμ's are initially understood to be abstract objects satisfying the equation you've written. Representation means we assign a matrix to each γμ and interpret the equation as a matrix equation, where the RHS contains the identity matrix I. Conjugacy refers to the fact that for any matrix M, if γμ is a solution then the conjugate set γμ' = M γμ M-1 is also a solution. Irreducible means that the γμ's are not simultaneously block diagonal, nor conjugate to a set that is block diagonal.

Putting that all together, it means that you can write down any set of γ matrices you can think of that solve the equation, and be assured that any other set γ' you might have chosen instead is related to your set by a conjugation.
 
Bill_K said:
The γμ's are initially understood to be abstract objects satisfying the equation you've written. Representation means we assign a matrix to each γμ and interpret the equation as a matrix equation, where the RHS contains the identity matrix I. Conjugacy refers to the fact that for any matrix M, if γμ is a solution then the conjugate set γμ' = M γμ M-1 is also a solution. Irreducible means that the γμ's are not simultaneously block diagonal, nor conjugate to a set that is block diagonal.

Putting that all together, it means that you can write down any set of γ matrices you can think of that solve the equation, and be assured that any other set γ' you might have chosen instead is related to your set by a conjugation.

thanks for the info Bill:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top