What Does T=D+D\circ D Represent in Polynomial Vector Spaces?

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Circle Mean
transgalactic
Messages
1,386
Reaction score
0
what this circle mean??

v is vectoric space of all polinomials <=3 with coefficient of R
D:v->v
T:v->v
i need to find the operator of
<br /> T=D+D\circ D<br />

find T regarding b={1,t,t^2,t^3} of V
 
Physics news on Phys.org


It usually means composition. For example, (f \circ g)(x) is f(g(x)).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top