What happens when comparing coefficients for RSin(a+b) and RCos(a+b)?

  • Thread starter Thread starter thomas49th
  • Start date Start date
thomas49th
Messages
645
Reaction score
0
Am i right in saying that when your comparing co-efficients for RSin(a+b) you swap over for the coefficients for sin and cos, while in RCos(a+b) you don't swap the co-efficients?

RSin(x+a)= RSinxCosa + RCosxSina
4Sin + 1Cos = RSinxCosa + RCosxSina

RSina = 1
RCosa = 4

BUT for RCos(x+a) = RSinxCosa + RCosxSina


4Sin + 1Cos = RSinxCosa + RCosxSina

RSina = 4
RCosa = 1

Do you see what i mean?

Thanks
 
Physics news on Phys.org
1. sin(x + a) = sin(x)cos(a) + cos(x)sin(a) so Rsin(x+a) = Rsin(x)cos(a)+Rcos(x)sin(a)
2. cos(x + a) = cos(x)cos(a) − sin(x)sin(a) so Rcos(x+a) = Rcos(x)cos(a)-Rsin(x)sin(a)

sin(x+a) \neq cos(x+a)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top