1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

What is a Feynman propagator

  1. Jul 24, 2014 #1

    The Feynman propagator [itex]\Delta_F(x)[/itex] is the propagator (the probability amplitude) for a scalar particle of non-zero mass, [itex]m[/itex], to travel over a space-time interval [itex]x[/itex].

    It is obtained by integrating, over all possible 3-momentums [itex]\mathbf{q}[/itex] of a particle of mass [itex]m[/itex], the function [itex]\Delta_+(x)[/itex] if [itex]x[/itex] is "forward in time" or the function [itex]\Delta_+(-x)[/itex] if [itex]x[/itex] is "backward in time".

    This is the same as integrating, over all possible 4-momentums [itex]q[/itex] (of any mass, and including those with negative energy), the function [itex]e^{iq\cdot x}/(q^2\ +\ m^2\ -\ i\varepsilon)[/itex]

    The propagator for a non-scalar particle is [itex]P(-i\frac{\partial}{\partial x})\Delta_F(x)[/itex] where P is a polynomial dependent on the spin of the particle.


    [tex]x\text{ is a 4-vector: }x=(\mathbf{x},t)[/tex]

    [tex]\Delta_+(x)\ =\ \frac{1}{(2\pi)^3}\ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} d^3\mathbf{q}\ \frac{e^{i(\mathbf{q}\cdot\mathbf{x}\ -\ \sqrt{\mathbf{q}^2\ +\ m^2}\,t)}}{2\sqrt{\mathbf{q}^2\ +\ m^2}}[/tex]

    Step function:
    [tex]\theta(t)\ =\ \frac{-1}{2\pi i}\int_{-\infty}^{\infty} ds\,\frac{e^{-ist}}{s\ +\ i\,\varepsilon}\ =\ 1\text{ if }t > 0\ \text{ but }=\ 0\text{ if }t < 0[/tex]

    Feynman propagator:
    [tex]\Delta_F(x)\ =\ i(\theta(x)\Delta_+(x)\ +\ \theta(-x)\Delta_+(-x))[/tex]

    [tex]\ =\ i\Delta_+(x)\text{ if }t > 0\ \text{ but }=\ i\Delta_+(-x)\text{ if }t < 0[/tex]

    [tex]=\ \frac{1}{(2\pi)^4}\ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\ d^4q\ e^{iq\cdot x}\ \left(\frac{1}{q^2\ +\ m^2\ -\ i\varepsilon}\right)[/tex]

    Propagator for spin-1/2 particle:
    [tex][(-i\gamma_{\mu}\frac{\partial}{\partial x^{\mu}}\ +\ m)\beta]\Delta_F(x)[/tex]

    [tex]=\ \frac{1}{(2\pi)^4}\ \int\int\int\int\ d^4q\ e^{iq\cdot x}\ \left(\frac{[(-i\gamma_{\mu}q^{\mu}\ +\ m)\beta]}{q^2\ +\ m^2\ -\ i\varepsilon}\right)[/tex]

    [tex]=\ \frac{1}{(2\pi)^4}\ \int\int\int\int\ d^4q\ e^{iq\cdot x}\ \left(\frac{1}{\gamma_{\mu}q^{\mu}\ -\ m\ -\ i\varepsilon}\right)[/tex]

    Extended explanation

    Re-calculation of ∆+(-x):

    [tex]\Delta_+(-x)\ =\ \frac{1}{(2\pi)^3}\ \int d^3\mathbf{q}\ \frac{e^{i(\mathbf{q}\cdot(\mathbf{-x})\ -\ \sqrt{\mathbf{q}^2\ +\ m^2}\,(-t))}}{2\sqrt{\mathbf{q}^2\ +\ m^2}}[/tex]

    So, replacing [itex]\mathbf{q}[/itex] by [itex]-\mathbf{q}[/itex] and [itex]d^3\mathbf{q}[/itex] by [itex]-d^3\mathbf{q}[/itex]:

    [tex]\Delta_+(-x)\ =\ \frac{-1}{(2\pi)^3}\ \int d^3\mathbf{q}\ \frac{e^{i(\mathbf{q}\cdot\mathbf{x}\ +\ \sqrt{\mathbf{q}^2\ +\ m^2}\,t)}}{2\sqrt{\mathbf{q}^2\ +\ m^2}}[/tex]

    Calculation of the Feynman propagator:

    [tex]\Delta_F(x)\ =\ i(\theta(x)\Delta_+(x)\ +\ \theta(-x)\Delta_+(-x))[/tex]

    [tex]=\ \frac{-1}{(2\pi)^4}\ \int\ d^3\mathbf{q}\ \frac{e^{i\,\mathbf{q}\cdot\mathbf{x}}}{ 2\sqrt{\mathbf{q}^2\ +\ m^2}}\ \left(\int ds\, \frac{e^{-i(\sqrt{\mathbf{q}^2\ +\ m^2}\ +\ s)\,t}}{s\ +\ i\,\varepsilon}\ -\ \int ds\,\frac{e^{i(\sqrt{\mathbf{q}^2\ +\ m^2}\ +\ s)\,t}}{s\ +\ i\,\varepsilon}\right)[/tex]

    [tex]=\ \frac{-1}{(2\pi)^4}\ \int\ d^3\mathbf{q}\ \frac{e^{i\,\mathbf{q}\cdot\mathbf{x}}}{ 2\sqrt{\mathbf{q}^2\ +\ m^2}}\ \int dq_0\ \left(\frac{e^{-iq_0t}}{q_0\ - \sqrt{\mathbf{q}^2\ +\ m^2}\ +\ i\varepsilon}\ \ +\ \ \frac{e^{-iq_0t}}{-q_0\ -\ \sqrt{\mathbf{q}^2\ +\ m^2}\ +\ i\varepsilon}\right)[/tex]

    where a new "energy" variable [itex]q_0[/itex] has been substituted for [itex]s+\sqrt{(\mathbf{q}^2\ +\ m^2)}[/itex] in the left part, and for [itex]-s-\sqrt{(\mathbf{q}^2\ +\ m^2)}[/itex] in the right part

    [tex]=\ \frac{1}{(2\pi)^4}\ \int\int\ d^3\mathbf{q}\ dq_0\ e^{i(\,\mathbf{q}\cdot\mathbf{x}\ -\ q_0t)}\ \left(\frac{1}{\mathbf{q}^2\ -\ q_0^2\ +\ m^2\ -\ i\varepsilon}\right)[/tex]

    which, writing [itex]q[/itex] as the 4-vector [itex](\mathbf{q},q_0)[/itex], is:

    [tex]=\ \frac{1}{(2\pi)^4}\ \int\ d^4q\ e^{iq\cdot x}\ \left(\frac{1}{q^2\ +\ m^2\ -\ i\varepsilon}\right)[/tex]

    * This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted