What is the Critical Density in the Context of Universe Expansion?

AI Thread Summary
The critical density is the density required to halt the universe's expansion, determining whether the universe is flat, open, or closed. It is derived from the Friedmann equation and Einstein field equations, which also calculate the cosmological constant and vacuum energy. The critical density equation is expressed as ρc = 3H²/(8πG), where H is the Hubble constant. For a Hubble constant of approximately 70 km/s/Mpc, the critical density is about 0.918 x 10^-26 kg/m³, equivalent to 0.825 joules per km³. Understanding critical density is essential for cosmological models and the fate of the universe.
Messages
19,791
Reaction score
10,748
Definition/Summary

The critical density is defined to be the density necessary to asymptotically halt the expansion of the universe (i.e. flat or euclidean), slightly less and the universe is 'open' (hyperbolic or saddle shaped), slightly greater and the universe is 'closed' (spherical).

Equations

Einstein field equations (EFE)-

G_{\mu\nu}+g_{\mu\nu}\Lambda=\frac{8\pi G}{c^4} T_{\mu\nu}

G_{\mu\nu} is the Einstein tensor of curvature (spacetime), g_{\mu\nu} is the metric tensor, \Lambda is the cosmological constant, 8\pi is the concentration factor and T_{\mu\nu} is the energy tensor of matter (matter energy).

Friedmann equation-

H^2=\frac{8 \pi G}{3} \rho - \frac{k c^2}{a^2}+\frac{\Lambda c^2}{3}

where H is a function of time (in this case, the inverse of Hubble time), G is the gravitaional constant, \rho is density in kg/m^3, k is the spatial curvature parameter (-1 to +1, -k is hyperbolic, 0 is flat and +k is hyperspherical), a is the time-scale factor (0 to 1, now being 1) (k/a^2 being the spatial curvature in any time-slice of the universe) and \Lambda is the cosmological constant. (G, \Lambda and c are universal constants, k is a constant throughout a solution and H, \rho, and a are a function of time. a is established by a=1/(1+z) where z is the redshift.

Critical density equation-

\rho_{c}=\frac{3H^2}{8\pi G}

where \rho_c is the critical density.

Extended explanation

Einstein field equations (EFE)-

G_{\mu\nu}+g_{\mu\nu}\Lambda=\frac{8\pi G}{c^4} T_{\mu\nu}

c and G are introduced to convert the quantity (which is expressed in physical units) to geometric units (G/c4 is used to convert units of energy into geometric units while G/c2 is used to convert units of mass, when mass is used instead of energy, the c4 is replaced with c2).

Using the EFE to establish Λ (presuming that gμν=1)

\Lambda =\frac{8\pi G}{c^4}u_{\Lambda}\ \equiv\ \ \frac{8 \pi G}{c^2}\rho_{\Lambda}

where uΛ is vacuum energy and ρΛ is vacuum density (basically, uΛ=ρΛ·c2)

The equation is more commonly known as-

\rho_{vac}=\frac{\Lambda c^2}{8\pi G}

where ρvac is essentially ρΛ

Critical density (ρc)-

The critical density is derived from the Friedmann equation-

H^2=\frac{8 \pi G}{3} \rho - \frac{k c^2}{a^2}+\frac{\Lambda c^2}{3}

substituting for Λ, the equation can be rewritten-

<br /> \begin{align*}<br /> H^2&amp;=\frac{8 \pi G}{3} \rho - \frac{kc^2}{a^2}+\frac{8 \pi G}{3}\rho_{\Lambda}\\<br /> <br /> &amp;=\frac{8 \pi G}{3} (\rho+\rho_{\Lambda}) - \frac{kc^2}{a^2}<br /> \end{align*}<br />

where \rho_c=(\rho+\rho_{\Lambda}), ρ representing baryonic and dark matter, ρΛ representing dark energy.

if we considered a flat universe, then k=0 and the equation can be reduced to-

H^2=\frac{8 \pi G}{3} \rho_c

rewriting the equation relative to ρc, the critical density for a flat universe is-

\rho_{c}=\frac{3H^2}{8\pi G}

Based on a Hubble constant of ~70 (km/s)/Mpc, a critical density of 0.918x10-26 kg/m3 is equivalent to 0.825 joules per km3.


Another short hand derivation based on exact escape velocity (i.e. kinetic energy cancelling out gravitational potential) is-

E=0=\frac{1}{2}v^2-\frac{Gm}{r}

\Rightarrow v_{esc}=\sqrt{\frac{2Gm}{r}}

if m is rewritten as-

m=V\rho

where V is volume of a sphere V=(4/3)\pi r^3 and substitute-

v_{esc}=\sqrt{\frac{8\pi G}{3}\rho r^2}

substituting for Hr=v (multiplying the inverse of Hubble time by the radius of the observable universe equals c) which would imply ρ=ρc-

Hr=\sqrt{\frac{8\pi G}{3}\rho_c r^2}

H^2r^2=\frac{8\pi G}{3}\rho_c r^2

H^2=\frac{8\pi G}{3}\rho_c

rearrange relative to ρc-

\rho_{c}=\frac{3H^2}{8\pi G}

* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
 
Astronomy news on Phys.org
Hi there! The critical density is the density necessary to asymptotically halt the expansion of the universe. This is determined using the Friedmann equation and Einstein field equations, which are used to calculate the cosmological constant Λ, the vacuum energy uΛ, the vacuum density ρΛ, and the critical density ρc. Substituting for Λ in the Friedmann equation results in an equation that can be rewritten relative to ρc, giving us the critical density equation: ρc=3H2/(8πG). Using a Hubble constant of ~70 km/s/Mpc, this yields a critical density of 0.918x10-26 kg/m3, which is equivalent to 0.825 joules per km3.
 
Is a homemade radio telescope realistic? There seems to be a confluence of multiple technologies that makes the situation better than when I was a wee lad: software-defined radio (SDR), the easy availability of satellite dishes, surveillance drives, and fast CPUs. Let's take a step back - it is trivial to see the sun in radio. An old analog TV, a set of "rabbit ears" antenna, and you're good to go. Point the antenna at the sun (i.e. the ears are perpendicular to it) and there is...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...

Similar threads

Replies
10
Views
2K
Replies
1
Views
4K
Replies
9
Views
1K
Replies
2
Views
2K
Replies
3
Views
2K
Back
Top