What Is the Acceleration of Two Blocks in a Frictional System?

  • Thread starter Thread starter natalydj83
  • Start date Start date
  • Tags Tags
    Acceleration
AI Thread Summary
The problem involves two blocks, one on a tabletop and one hanging, connected by a string over a frictionless pulley. The first block has a mass of 1 kg and experiences kinetic friction with a coefficient of 0.3, while the second block has a mass of 2 kg. The correct approach to find the acceleration involves calculating the net force and total mass, leading to an acceleration of approximately 7.5 m/s². A mistake was identified in the initial calculation of tension, which should account for the frictional force correctly. The final consensus confirms that the calculated acceleration is accurate.
natalydj83
Messages
2
Reaction score
0
hw Problem:
A block of mass 1 kg rests on a tabletop with coeficient of kinetic frictionequal to 0.3. The block is conected by a string which passes over a frictionless pulley to a second block of mass 2kg which hangs vertically from the string. The acceleration of the two block is...?

mass(1)=1kg
mass(2)=2kg
uk=0.3(coeficient)
Fr(friction)=uk*Fn(normal force)

My solution:
(x)F=ma

box 1
component (x)=Ft(force tension)-Ffr(friction)=ma
component (y)=Fn(normal force)-mg(weight)=m(a=0)
Fn=mg
Fn=1kg*9.8=9.8N

component (x)=Ft-uk*Fn=ma
component (x)=Ft=ma-uk*Fn
Ft=ma-0.3*9.8=ma-2.94
Ft1=ma-2.94N

Box 2
component (y)=mg-Ft=ma
mg-ma=Ft

Now: Ft1=Ft2
m(1)a-2.94=m(2)g-m(2)a
a=(m(2)g+2.94)/m1+m2

a=(2*(9.8)+2.94)/2+1=7.51m/s^2

IS THIS SOLUTION RIGHT? If not please indicate where i made a mistake
 
Physics news on Phys.org
On box 1 you made a mistake, Ft-uk*Fn=ma then you went to Ft=ma-uk*Fn. It should be Ft=ma+uk*Fn.
 
natalydj83 said:
hw Problem:
A block of mass 1 kg rests on a tabletop with coeficient of kinetic frictionequal to 0.3. The block is conected by a string which passes over a frictionless pulley to a second block of mass 2kg which hangs vertically from the string. The acceleration of the two block is...?

mass(1)=1kg
mass(2)=2kg
uk=0.3(coeficient)
Fr(friction)=uk*Fn(normal force)

My solution:
(x)F=ma

box 1
component (x)=Ft(force tension)-Ffr(friction)=ma
component (y)=Fn(normal force)-mg(weight)=m(a=0)
Fn=mg
Fn=1kg*9.8=9.8N

component (x)=Ft-uk*Fn=ma
component (x)=Ft=ma-uk*Fn
Ft=ma-0.3*9.8=ma-2.94
Ft1=ma-2.94N

Box 2
component (y)=mg-Ft=ma
mg-ma=Ft

Now: Ft1=Ft2
m(1)a-2.94=m(2)g-m(2)a
a=(m(2)g+2.94)/m1+m2

a=(2*(9.8)+2.94)/2+1=7.51m/s^2

IS THIS SOLUTION RIGHT? If not please indicate where i made a mistake

The net force is F=2*9.8+0.3*9.8=22.54 N. The net mass is m=2+1=3kg. So the acceleration is a=F/m = 22.54/3=7.5 m/s^2. Thus your answer is correct
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top