Raz91
- 20
- 0
\Huge
Consider a state of the EM field which satisfies
\left\langle \textbf{E}_x(\vec{r})\right\rangle =f(\vec{r})
Find a coherent state which satises these expectation values.
\textbf{E}(\textbf{r})=\frac{i}{\sqrt{2 V}}\sum _{\textbf{k},\lambda } \sqrt{\omega _k}\left(e^{-i \textbf{k}\textbf{ r}} a^{\dagger }{}_{\textbf{k},\lambda } \hat{\epsilon }^*{}_{\textbf{k},\lambda }+e^{-i \textbf{k}\textbf{r}} a_{\textbf{k},\lambda } \hat{\epsilon }_{\textbf{k},\lambda }\right)
Coherent State :
a|\alpha \rangle =\alpha |\alpha \rangle
I tried to calculate this , but i just don't understand what am I suppose to prove here?
isn't it trivial that the expectation value will be a function of r (vector) ?
I've got this :
<br /> \left\langle \textbf{E}_x(r)\right\rangle =\sum _{k,\lambda } \sqrt{\frac{2 \omega _k}{V}} \textbf{Im}\left(\alpha e^{-i k r} \epsilon _{x_{k,\lambda }}\right)Thank you !
Homework Statement
Consider a state of the EM field which satisfies
\left\langle \textbf{E}_x(\vec{r})\right\rangle =f(\vec{r})
Find a coherent state which satises these expectation values.
Homework Equations
\textbf{E}(\textbf{r})=\frac{i}{\sqrt{2 V}}\sum _{\textbf{k},\lambda } \sqrt{\omega _k}\left(e^{-i \textbf{k}\textbf{ r}} a^{\dagger }{}_{\textbf{k},\lambda } \hat{\epsilon }^*{}_{\textbf{k},\lambda }+e^{-i \textbf{k}\textbf{r}} a_{\textbf{k},\lambda } \hat{\epsilon }_{\textbf{k},\lambda }\right)
Coherent State :
a|\alpha \rangle =\alpha |\alpha \rangle
The Attempt at a Solution
I tried to calculate this , but i just don't understand what am I suppose to prove here?
isn't it trivial that the expectation value will be a function of r (vector) ?
I've got this :
<br /> \left\langle \textbf{E}_x(r)\right\rangle =\sum _{k,\lambda } \sqrt{\frac{2 \omega _k}{V}} \textbf{Im}\left(\alpha e^{-i k r} \epsilon _{x_{k,\lambda }}\right)Thank you !