What Is the Correct Formula for the Radius of Convergence?

lom
Messages
29
Reaction score
0
\sum \frac{n^2}{3^nz^n}\\

\frac{1}{R}=\lim_{n->\infty}\sqrt[n]{|\sum \frac{n^2}{3^nz^n}|}\\

what to do now?
 
Physics news on Phys.org
What's the question? Also, I don't believe that your formula for 1/R is correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top