alba_ei
- 38
- 1
Homework Statement
\int \frac{ae^\theta+b}{ae^\theta-b} \, d\theta
The Attempt at a Solution
i took u = ae^\theta-b so e^\theta = \frac{u + b}{a} then i substituded back into the integral and iget this
\int \frac{u + b + b}{u} \, du
\int du +\int \frac{2b}{u} \, du
= u \du + 2b \ln u +C
= u + 2b \ln u +C
= ae^\theta-b + 2b\ln (ae^\theta-b)
but the answer of the book is
\int \frac{ae^\theta+b}{ae^\theta-b} \, d\theta = 2\ln (ae^\theta-b) - \theta + C
what did i do wrong?
Last edited: