Bazman
- 20
- 0
Hi,
The final answer below is wrong. Is should be 8a! Not sure where I made the error below?
Also is there another substitution that can be used at the earlier line
a \int_0^{2 \pi} \{ 2( 1 - \sin \phi) \}^{\frac{1}{2}} d\phi
to subtitute for the (1 - \sin \phi) without the need to use
s = \frac{\pi}{2} - t.
This would also be very useful for the next part where I have to calculate the area of surface of revolution!
(ii)
L = \int_0^{2 \pi} \{ r^2 + (\frac{dr}{d \theta})^2 \}^{\frac{1}{2}} d \phi
\int_0^{2 \pi} \{ a^2(1- \sin \phi)^2 + (-a \cos \phi)^2 \}^{\frac{1}{2}} d\phi
a \int_0^{2 \pi} \{ 2( 1 - \sin \phi) \}^{\frac{1}{2}} d\phi
using s = \frac{\pi}{2} - t
\frac{ds}{dt} = -1
-a \int_{\frac{\pi}{2}}^{\frac{-3\pi}{2}} \{ 2( 1 - \cos \phi) \}^{\frac{1}{2}} d\phi
a \int_{\frac{-3\pi}{2}}^{\frac{\pi}{2}} \{ 4 \sin^2 (\frac{\phi}{2}) \}^{\frac{1}{2}} d\phi
a \int_{\frac{-3\pi}{2}}^{\frac{\pi}{2}} \{ 2 \sin (\frac{\phi}{2} \} d\phi
a [ -4 \cos (\frac{\phi}{2} ]_{\frac{-3\pi}{2}}^{\frac{\pi}{2}}
= 4a(\frac{1}{2 \sqrt{2}})
The final answer below is wrong. Is should be 8a! Not sure where I made the error below?
Also is there another substitution that can be used at the earlier line
a \int_0^{2 \pi} \{ 2( 1 - \sin \phi) \}^{\frac{1}{2}} d\phi
to subtitute for the (1 - \sin \phi) without the need to use
s = \frac{\pi}{2} - t.
This would also be very useful for the next part where I have to calculate the area of surface of revolution!
(ii)
L = \int_0^{2 \pi} \{ r^2 + (\frac{dr}{d \theta})^2 \}^{\frac{1}{2}} d \phi
\int_0^{2 \pi} \{ a^2(1- \sin \phi)^2 + (-a \cos \phi)^2 \}^{\frac{1}{2}} d\phi
a \int_0^{2 \pi} \{ 2( 1 - \sin \phi) \}^{\frac{1}{2}} d\phi
using s = \frac{\pi}{2} - t
\frac{ds}{dt} = -1
-a \int_{\frac{\pi}{2}}^{\frac{-3\pi}{2}} \{ 2( 1 - \cos \phi) \}^{\frac{1}{2}} d\phi
a \int_{\frac{-3\pi}{2}}^{\frac{\pi}{2}} \{ 4 \sin^2 (\frac{\phi}{2}) \}^{\frac{1}{2}} d\phi
a \int_{\frac{-3\pi}{2}}^{\frac{\pi}{2}} \{ 2 \sin (\frac{\phi}{2} \} d\phi
a [ -4 \cos (\frac{\phi}{2} ]_{\frac{-3\pi}{2}}^{\frac{\pi}{2}}
= 4a(\frac{1}{2 \sqrt{2}})