What is the cross product of 5k and 3i+4j?

AI Thread Summary
The discussion centers on calculating the cross product of the vectors 5k and 3i + 4j. It is clarified that the correct application of the cross product rules leads to the result of 15j - 20i. The linearity and anti-symmetry properties of the cross product are emphasized, particularly how k x j results in -i. A mnemonic for remembering the cross product determinant is mentioned, but there are concerns about the accuracy of the determinant setup. Ultimately, the conclusion is that the cross product yields 15j - 20i, confirming the initial calculation.
B4ssHunter
Messages
178
Reaction score
4
i have a vector xK where k is the unit vector perpendicular to other unit vectors i and j
when i multiply a force which has 5k for instance another which has ( 3 i + 4 j )
i multiply 5k by 3i then 5k by 4j right ?
the answer would be ( 15 j - 20 i ) right ?
 
Mathematics news on Phys.org
"5k for instance another which has ( 3 i + 4 j )
i multiply 5k by 3i then 5k by 4j right ?"
"the answer would be ( 15 j - 20 i ) right ? "
If your k-vector is the left-hand factor in the cross product, yes.
If your k-vector is your right-hand factor, the signs should be changed.
 
It's hard to make sense out of this. I presume you are asking specifically about the cross product of the vectors 5k and 3i+ 4j. The basic rules for the cross product is that ixj= k, jxk= i, kxi= j, the cross product is "anti- symmetric" (uxv= -vxu), and linear.

The fact that the cross product is linear means that 5k x(3i+ 4j)= 15 kxi+ 20 kxj. The fact that the cross product is anti-symmetric means that kxj= -jxk= -i, so that 5k x (3i+ 4j)= 15j- 20i.

Most people remember the cross product with the mnemonic
(ai+ bj+ ck)\times (di+ ej+ fk)= \left|\begin{array}{ccc}i & j & k \\ a & b & c \\ d & j & k\end{array}\right|
where the right side is the determinant.

Here, that would give
5k \times 3i+ 4j= \left|\begin{array}{ccc}i & j & k \\ 0 & 0 & 5 \\ 3 & 4 & 0 \end{array}\right|
Expanding the determinant on the second row, that is
-5\left|\begin{array}{cc}i & j \\ 3 & 4 \end{array}\right|= -5(4i- 3j)= 15j- 20i
 
Last edited by a moderator:
HallsofIvy said:
It's hard to make sense out of this. I presume you are asking specifically about the cross product of the vectors 5k and 3i+ 4j. The basic rules for the cross product is that ixj= k, jxk= i, kxi= j, the cross product is "anti- symmetric" (uxv= -vxu), and linear.

The fact that the cross product is linear means that 5k x(3i+ 4j)= 15 kxi+ 20 kxj. The fact that the cross product is anti-symmetric means that kxj= -jxk= -i, so that 5k x (3i+ 4j)= 15j- 20i.

Most people remember the cross product with the mnemonic
(ai+ bj+ ck)\times (di+ ej+ fk)= \left|\begin{array}{ccc}i & j & k \\ a & b & c \\ d & j & k\end{array}\right|
where the right side is the determinant.

Here, that would give
5k \times 3i+ 4j= \left|\begin{array}{ccc}i & j & k \\ 0 & 0 & 5 \\ 3 & 4 & 0 \end{array}\right|
Expanding the determinant on the second row, that is
-5\left|\begin{array}{cc}i & j \\ 3 & 4 \end{array}\right|= -5(4i- 3j)= 15j- 20i

The determinant looks wrong.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top