What is the Eigenvalue for a Harmonic Oscillator?

Habeebe
Messages
37
Reaction score
1

Homework Statement


The Hamiltonian for a particle in a harmonic potential is given by
\hat{H}=\frac{\hat{p}^2}{2m}+\frac{Kx^2}{2}, where K is the spring constant. Start with the trial wave function \psi(x)=exp(\frac{-x^2}{2a^2})
and solve the energy eigenvalue equation \hat{H}\psi(x)=E\psi(x). You must find the value of the constant, a, which will make applying the Hamiltonian to the function return a constant time[sic, I assume he meant "times"] the function. Then find the energy eigenvalue.

Homework Equations


\hat{H}=\frac{\hat{p}^2}{2m}+\frac{Kx^2}{2}
\psi(x)=exp(\frac{-x^2}{2a^2})
\hat{H}\psi(x)=E\psi(x)

The Attempt at a Solution


Application of the Hamiltonian gave me:
\hat{H}\psi(x)=[\frac{h^2}{2m}(\frac{1}{a^2}+\frac{x^2}{a^2})+\frac{1}{2}Kx^2]\psi(x)=E\psi(x)

If I understand the problem correctly, since E and a must be constant, I must come up with an a, devoid of any x's or functions of x's so taking the Hamiltonian will yield something equally devoid of x's and functions of x's.

I mean, I get that I should have [\frac{h^2}{2m}(\frac{1}{a^2}+\frac{x^2}{a^2})+\frac{1}{2}Kx^2]=E for some constants E, a. The problem is, I have no clue how to go about solving that and getting a to not involve any x's, nor am I convinced that it's possible. Using the quadratic formula on it gives a big mess (involving x), so I'm pretty sure that's the wrong route.

Thanks for the help.
 
Physics news on Phys.org
You have a sign error: How is the operator \hat{p} defined?

To remove x from the equation, collect the terms with x2. You have to choose the parameter a properly, so as the two terms cancel each other.


ehild
 
  • Like
Likes 1 person
Also check to see if you have enough factors of ##a## in the denominator of your ##x^2/a^2## term.
 
Thanks, I found the sign error and got it worked out. As for the factors of a, you're right, I actually typed it in wrong.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top