banfina
- 2
- 0
Homework Statement
Given two constants, A and B, what is the energy of the following signal?
f(t) = A*rect(t) + B*rect(t-0.5)
Homework Equations
E_f = \int_{-\infty}^{\infty} |f(t)|^2
The Attempt at a Solution
E_f = \int_{-\infty}^{\infty} [A*rect(t) + B*rect(t-0.5)]^2 dt
= \int_{-\infty}^{\infty} [A^2*rect^2(t) + 2AB*rect(t)rect(t-0.5) + B^2rect^2(t-0.5)] dt
= A^2\int_{-\infty}^{\infty} rect^2(t) dt + 2AB\int_{-\infty}^{\infty} rect(t)rect(t-0.5) dt + B^2\int_{-\infty}^{\infty} rect^2(t-0.5) dt
= A^2 + 2AB + B^2
= (A + B)^2
This seems wrong to me somehow; I guess my real question is does \int_{-\infty}^{\infty} rect^2(\frac{t}{\tau}) = \tau?